Deduction of Electric Field Module in a Multilayer of Isotropic Materials to Detect Surface Plasmons with a Graphical User Interface

Authors

DOI:

https://doi.org/10.1590/2179-10742021v20i1927

Keywords:

Electric field, isotropy, multilayers, optical function, plasmons, resonance, transfer matrix.

Abstract

Electric field module for any isotropic multilayer thin film structure, is presented as analytical deduction. Analytic expressions for the electric field distribution are developed initially for a monolayer isotropic system based on Airy’s formulae and boundary conditions, with an incident monochromatic source of light. The transfer matrix method 2×2, is used to deduce the distribution of the forward and backward electric field amplitudes on the inner layers in a general multilayer thin film structure. Analytical results are simulated in Transverse-Magnetic (TM) and Transverse-Electric (TE) modes making evident (when takes place) an electric field enhancement due to surface plasmons resonance. A graphical user interface is created to make steady simulations and create new structures as desired, minimizing time and optimizing resources.

Author Biographies

B. G. Suan, Universidad Santo Tomás

Docente Tiempo Completo

J. Y. M. Perico, Universidad Santo Tomás

Docente Tiempo Copleto

References

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, Elsevier, 2013, pp. 51-70.

O. Heavens, Optical properties of thin solid films, Courier Corporation, 1991, pp. 46-73.

E. M. Schmidlin and H. J. Simon, "Observation of long range surface plasmon decay length by optical second harmonic generation," Applied optics, vol. 28, no. 16, pp. 3323 - 3326, 1989.

P. Martinot, S. Laval and A. Koster, "Optical bistability from surface plasmon excitation through a nonlinear medium," Journal de Physique, vol. 45, no. 3, pp. 597 - 600, 1984.

V. Shpacovitch and R. Hergenröder, "Surface Plasmon Resonance (SPR)-Based Biosensors as Instruments with High Versatility and Sensitivity," Multidisciplinary Digital Publishing Institute, 2020.

B. Sepúlveda, A. Calle, L. M. Lechuga y G. Armelles, «Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,» Optics letters, vol. 31, nº 8, pp. 1085-1087, 2006. doi: 10.1364/OL.31.001085.

D. Ferreira, A. Tinoco Salazar, I. Bianchi and . J. d. S. Lacava, "Planar multilayer structure analysis: an educational approach," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, vol. 11, no. 1, pp. 93 - 106, 2012.

M. Africano, J. O. Vargas, R. Adriano, Oliveira and A. C. Lisboa, "Ground-Penetrating Radar Antenna Design for Homogeneous and Low-Loss Dielectric Multilayer Media," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, vol. 19, no. 2, pp. 137 - 151, 2020.

J. Reitz, F. Milford and R. Christy, Foundations of Electromagnetic Theory, USA: Addison-Wesley Publishing Company, 2008, pp. 441-466.

H. Fujiwara, Spectroscopic ellipsometry: principles and applications, John Wiley & Sons, 2007, pp. 32-47.

H. Raether, "Surface plasmons on smooth surfaces," in Surface plasmons on smooth and rough surfaces and on gratings, Springer, 1988, pp. 4-39. doi: 10.1007/BFb0048319.

Y. Akimov, M. E. Pam and S. Sun, "Kretschmann-Raether configuration: Revision of the theory of resonant interaction," Physical Review B, vol. 96, no. 15, p. 155433, 2017.

P. Yeh, Optical Waves in Layered Media, California: John Wiley & Sons, 2005, pp. 102-114.

D. J. Griffiths, Introduction to Electrodynamics, Pearson, Addison-Wesley, 2013.

D. L. Windt, "IMD—Software for modeling the optical properties of multilayer films," Computers in physics, vol. 12, no. 4, pp. 360-370, 1998. doi: 10.1063/1.168689.

A. Tikhonravov, "OptiLayer thin film soft-ware," OptiLayer GmbH, [Online]. Available: https://www.optilayer.com/. [Accessed 16 06 2020].

H. R. Gwon and S. H. Lee, "Spectral and angular responses of surface plasmon resonance based on the Kretschmann prism configuration," Materials transactions, vol. 51, no. 6, pp. 1150-1155, 2010. doi: 10.2320/matertrans.M2010003.

J. R. Sambles, G. W. Bradbery and F. Yang, "Optical excitation of surface plasmons: an introduction," Contemporary physics, vol. 32, no. 3, pp. 173-183, 1991. doi: 10.1080/00107519108211048.

E. Hutter and J. H. Fendler, "Exploitation of localized surface plasmon resonance," Advanced materials, vol. 16, no. 19, pp. 1685-1706, 2004. doi: 10.1002/adma.200400271.

K. A. Willets and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annu. Rev. Phys. Chem., vol. 58, pp. 267-297, 2007. doi: 10.1146/annurev.physchem.58.032806.104607.

G. Armelles, A. Cebollada, A. García-Martín and M. U. Gonzalez, "Magnetoplasmonics: combining magnetic and plasmonic functionalities.," Advanced Optical Materials, vol. 1, no. 1, pp. 10-35, 2013. doi: 10.1002/adom.201200011.

F. J. García Vidal and L. Martín Moreno, "Plasmones superficiales," 2008. [Online]. Available: https://www.investigacionyciencia.es/files/3055.pdf. [Accessed 11 abril 2020].

A. Shalabney and I. Abdulhalim, "Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors," Sensors and Actuators A: Physical, vol. 159, no. 1, pp. 24-32, 2010. doi: 10.1016/j.sna.2010.02.005.

B. Royuk, A calculation of electric field strengths for light in a multilayer thin film structure, Illinois: Master's Thesis. Southern Illinois University., 1996.

A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Zeitschrift für Physik A Hadrons and nuclei, vol. 216, no. 4, pp. 398-410, 1968. doi: 10.1007/BF01391532.

R. B. Schasfoort, Handbook of Surface Plasmon Resonance, United Kingdom: Royal Society of Chemistry, 2017, pp. 33-34.

B. Garibello, N. Avilán, J. A. Galvis and C. A. Herreño-Fierro, "On the singularity of the Yeh 4 × 4 transfer matrix formalism," Journal of Modern Optics, https://doi.org/10.1080/09500340.2020.1775905, pp. 1-5, 2020.

M. Polyanskiy, "Refractive Index database," 2008 - 2020. [Online]. Available: https://refractiveindex.info/. [Accessed 11 04 2020].

C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. I. Safarov and P. Bertrand, "Surface-enhanced magneto-optics in metallic multilayer films," Physical Review B, vol. 64, no. 23, p. 235422, 2001. doi: 10.1103/PhysRevB.64.235422.

B. Garibello and Y. Martín, "Simulación de las funciones ópticas y detección en plasones de superficie en multicapas isotrópicas," in Memorias congreso internacional de ciencias básicas e ingeniería. CICI. ISBN: 978-958-8927-45-9, Villaviencio, 2018.

R. Zia, M. Selker, P. Catrysse and M. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," JOSA A, vol. 21, no. 12, pp. 2442 - 2446, 2004.

A. Zayats, I. I. Smolyaninov and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Physics reports, vol. 408, no. 3 - 4, pp. 131 - 314, 2005.

Downloads

Published

2020-12-11

How to Cite

Garibello Suan, B., & Martín Perico, J. Y. (2020). Deduction of Electric Field Module in a Multilayer of Isotropic Materials to Detect Surface Plasmons with a Graphical User Interface. Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 20(1), AoP 1-15. https://doi.org/10.1590/2179-10742021v20i1927

Issue

Section

Regular Papers