Metamaterial-Fractal-Defected Ground Structure Concepts Combining for Highly Miniaturized Triple-Band Antenna Design




Compact antenna, Miniaturisation, Metamaterials, Fractal technique, DGS technique


In this paper, a novel method is proposed to increase the gain and radiation efficiency of a compact patch antenna. By employing a combination of three efficient techniques, we have developed a multi-resonance L-DGS antenna with a high gain of 5 dB and an efficiency of 99.6%. Furthermore, a novel compact Double Negative metamaterial unit cell and its equivalent circuit are investigated, to achieve high miniaturization of 30×30 mm2 and multi-band wireless applications (2.8 GHz, 4.1-4.45 GHz, 5.6 GHz). Koch snowflake fractal is introduced along radiation patch edges to improve the antenna matching. The antenna is designed using commercially available package CST software, printed on Rogers RT5880, and the probe feed mechanism is adopted for the antenna excitation. Then, to prove the validation of the antenna design, the equivalent circuit is presented and simulated using ADS of Agilent software. The compared simulation results given by CST, HFSS and ADS software have confirmed the antenna use for WIMAX, C-band and WLAN applications.


J. L. Volakis, C.-C. Chen, and K. (Kyōhei) Fujimoto, Small antennas : miniaturization techniques & applications. McGraw-Hill, 2010.

N. Michishita, Y. Yamada, and N. Nakakura, “Miniaturization of a small meander line antenna by loading a high εr material,” in 2004 Joint Conference of the 10th Asia-Pacific Conference on Communications and the 5th International Symposium on Multi-Dimensional Mobile Communications Proceedings, APCC/MDMC’04, 2004, vol. 2, pp. 651–654, doi: 10.1109/apcc.2004.1391796.

S. R. Best and J. D. Morrow, “The effectiveness of space-filling fractal geometry in lowering resonant frequency,” IEEE Antennas Wirel. Propag. Lett., vol. 1, no. 1, pp. 112–115, 2002, doi: 10.1109/LAWP.2002.806050.

J. P. Gianvittorio and Y. Rahmat-Samii, “Fractal antennas: A novel antenna miniaturization technique, and applications,” IEEE Antennas Propag. Mag., vol. 44, no. 1, pp. 20–36, Feb. 2002, doi: 10.1109/74.997888.

R. Azaro, G. Boato, M. Donelli, G. Franceschini, A. Martini, and A. Massa, “Design of miniaturised ISM-band fractal antenna,” Electron. Lett., vol. 41, no. 14, pp. 785–786, Jul. 2005, doi: 10.1049/el:20050774.

W. L. Chen and G. M. Wang, “Small size edge-fed Sierpinski carpet microstrip patch antennas,” Prog. Electromagn. Res. C, vol. 3, pp. 195–202, 2008, doi: 10.2528/PIERC08050302.

C. P. Baliarda, C. B. Borau, M. N. Rodero, and J. R. Robert, “An iterative model for fractal antennas: Application to the Sierpinski gasket antenna,” IEEE Trans. Antennas Propag., vol. 48, no. 5, pp. 713–719, 2000, doi: 10.1109/8.855489.

G. Zhou, “Shorting-pin loaded annular ring microstrip antenna,” in IEEE Antennas and Propagation Society International Symposium, 1998 Digest - Antennas: Gateways to the Global Network - Held in conjunction with: USNC/URSI National Radio Science Meeting, 1998, vol. 2, pp. 900–903, doi: 10.1109/APS.1998.702094.

R. H. Chen and Y. C. Lin, “Miniaturized design of microstrip-fed slot antennas loaded with C-shaped rings,” IEEE Antennas Wirel. Propag. Lett., vol. 10, pp. 203–206, 2011, doi: 10.1109/LAWP.2011.2123075.

X. Cheng, D. E. Senior, C. Kim, and Y. K. Yoon, “A compact omnidirectional self-packaged patch antenna with complementary split-ring resonator loading for wireless endoscope applications,” IEEE Antennas Wirel. Propag. Lett., vol. 10, pp. 1532–1535, 2011, doi: 10.1109/LAWP.2011.2181315.

A. Alù, F. Bilotti, N. Engheta, and L. Vegni, “Subwavelength, compact, resonant patch antennas loaded with metamaterials,” IEEE Trans. Antennas Propag., vol. 55, no. 1, pp. 13–25, Jan. 2007, doi: 10.1109/TAP.2006.888401.

C. S. Hong, “Small annular slot antenna with capacitor loading,” Electron. Lett., vol. 36, no. 2, pp. 110–111, Jan. 2000, doi: 10.1049/el:20000147.

Y. Hwang, Y. P. Zhang, G. X. Zheng, and T. K. C. Lo, “Planar inverted F antenna loaded with high permittivity material,” Electron. Lett., vol. 31, no. 20, pp. 1710–1712, Sep. 1995, doi: 10.1049/el:19951184.

Y. Cheng, B. Peng, Z. Hu, Z. Zhou, and M. Liu, “Recent development and status of magnetoelectric materials and devices,” Phys. Lett. Sect. A Gen. At. Solid State Phys., vol. 382, no. 41, pp. 3018–3025, Oct. 2018, doi: 10.1016/j.physleta.2018.07.014.

C. Niamien, S. Collardey, A. Sharaiha, and K. Mahdjoubi, “Surface wave loss and material loss in printed antennas over magneto-dielectric materials,” in 2010 14th International Symposium on Antenna Technology and Applied Electromagnetics and the American Electromagnetics Conference, ANTEM/AMEREM 2010, 2010, doi: 10.1109/ANTEM.2010.5552498.

F. Canneva et al., “Miniature reconfigurable antenna with magneto dielectric substrate for DVB-H band,” Microw. Opt. Technol. Lett., vol. 55, no. 9, pp. 2007–2011, Sep. 2013, doi: 10.1002/mop.27793.

K. Li, C. Zhu, L. Li, Y. M. Cai, and C. H. Liang, “Design of electrically small metamaterial antenna with ELC and EBG loading,” IEEE Antennas Wirel. Propag. Lett., vol. 12, pp. 678–681, 2013, doi: 10.1109/LAWP.2013.2264099.

G. Varamini, A. Keshtkar, N. Daryasafar, and M. Naser-Moghadasi, “Microstrip Sierpinski fractal carpet for slot antenna with metamaterial loads for dual-band wireless application,” AEU - Int. J. Electron. Commun., vol. 84, pp. 93–99, Feb. 2018, doi: 10.1016/j.aeue.2017.11.028.

A. K. Singh, M. P. Abegaonkar, and S. K. Koul, “Miniaturized multiband microstrip patch antenna using metamaterial loading for wireless application,” Prog. Electromagn. Res. C, vol. 83, pp. 71–82, 2018, doi: 10.2528/PIERC18012905.

A. Boukarkar, X. Q. Lin, Y. Jiang, and Y. Q. Yu, “Miniaturized Single-Feed Multiband Patch Antennas,” IEEE Trans. Antennas Propag., vol. 65, no. 2, pp. 850–854, Feb. 2017, doi: 10.1109/TAP.2016.2632620.

R. Selvaraju, M. H. Jamaluddin, M. R. Kamarudin, J. Nasir, and M. H. Dahri, “Complementary split ring resonator for isolation enhancement in 5G communication antenna array,” Prog. Electromagn. Res. C, vol. 83, pp. 217–228, Jan. 2018, doi: 10.2528/PIERC18011019.

Z. Szabó, G. H. Park, R. Hedge, and E. P. Li, “A unique extraction of metamaterial parameters based on Kramers-Kronig relationship,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 10, pp. 2646–2653, Oct. 2010, doi: 10.1109/TMTT.2010.2065310.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” doi: 10.1103/PhysRevE.70.016608.

W. F. Richards, “Microstrip Antennas,” in Antenna Handbook, Springer US, 1988, pp. 639–712.

C. A. Balanis, Antenna theory : analysis and design.

T. Ali and R. C. Biradar, “A triple-band highly miniaturized antenna for WiMAX/WLAN applications,” Microw. Opt. Technol. Lett., vol. 60, no. 2, pp. 466–471, Feb. 2018, doi: 10.1002/mop.30993.




How to Cite

Annou, A., Berhab, S., & Chebbara, F. (2020). Metamaterial-Fractal-Defected Ground Structure Concepts Combining for Highly Miniaturized Triple-Band Antenna Design. Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 19(4), AoP 522-541.



Regular Papers