Effect of Metamaterial Cells Array on a Microstrip Patch Antenna Design

Authors

DOI:

https://doi.org/10.1590/2179-10742020v19i3886

Keywords:

Antenna design, cell array, metamaterial, substrate

Abstract

In this paper, a microstrip patch antenna (MPA) design was developed to verify the performance of a metamaterial cell array (MTM) Capacitive Loaded Loop (CLL) immersed in the substrate. The metamaterial was obtained from metal laminates designed inside a dielectric material, with dimensions carefully calculated to have the effective negative permittivity and permeability, consequently the negative refractive index, in a certain frequency range. In this case, the geometric control of the unit cell parameters allowed its organization in a periodic arrangement to be immersed in the MPA substrate. Simulated and experimental results were obtained and compared for some parameters of the antenna, which showed a good relationship between MTM and MPA performance. 

References

D. A. Ketzaki and T. V. Yioultsis, “Metamaterial-based design of planar compact MIMO monopoles,” IEEE Trans. on Antennas and Prop., vol. 61, pp. 2758–2766, 2013.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of E and mi,” Soviet Physics Uspekhi, vol. 10, pp. 509–514, 1968.

D. R. Smith, J. B. Pendry and M. C. K Wiltshire, “Metamaterial and negative refractive index,” Scince, vol. 305, pp. 788–792, 2004.

D. C. Corrêa, U. C. Resende, F. S. Bicalho and Y. S. Gonçalves, “Design, optimization and experimental evalution of a F-shaped Multiband metamaterial antenna,” Journal of Microw., Opt. and Electrom. Applic., vol. 17, pp. 590-603, 2018.

M. T. Islam, Md. N. Rahman, Md. Samsuzzaman, M. F. Mansor and N. Misran, ”Resonator-inspired metamaterial sensor: design and experimental validation for measuring thickness of multi-layered structures’, Sensors, vol. 18, pp. 1–20, 2018.

M. Ameen and R. K. Chaudhary, ”Metamaterial-based circularly polarised antenna employing ENG-TL with enhanced bandwidth for WLAN applications,” Electronics Letters, vol. 54, pp. 1152-1154, 2018.

M. M. Islam, M. T. Islam, M. Samsuzzaman and M. R. I. Faruque, “Compact metamaterial antenna for UWB applications,” Electronics Letters, vol. 51, pp. 1222-1224, 2015.

C. Fang and F. Xu, “Miniaturized active metamaterial resonant antenna with improved radiation performance based on negative-resistance-enhanced CRLH transmission lines,” IEEE Anten. and Wirel. Prop., vol. 17, pp. 1162–1165, 2018.

J. L. da Silva, H. D. de Andrade, H. C. C. Fernandes, B. T. Isaac, I. S. Q. Júnior, J. P. P. Pereira and A. S. S. Neto “Microstrip patch antenna project with split ring resonator periodically arrayed on the substrate,” Microw. Opl. Technol. Lett., vol. 57, pp. 2715–2720, 2015.

A. H. Jabire, H. Zheng, A. Abdu and Z. Song, “Characterístic mode analysis and design of wide band MIMO antenna consisting of metamaterial unit cell,” Eletronics, vol. 8, p. 68, 2019.

T. Alam, M. R. I. Faruque and M. T. Islam, “Specific absorption rate reduction of multi-standard mobile antenna with double-negative metamaterial,” Eletronics Letters, vol. 51, pp. 970-971, 2015.

T. Ali, A. W. S. Mohammad, R. C. Biradar, J. Anguera and A. Andújar, “A miniatirized metamaterial slot antenna for wireless applications,” Int. Journal Electron. Commun., vol. 82, pp. 368-382, 2017.

P. Dawar,N. S. Raghava and N.S., A. T. L. De, “UWB metamaterial-loaded antenna for C-band applications,” Int. Journal of Ant. and Propag., vol. 82, pp. 368-382, 2017.

P. Baccarelli, P. Burghignoli, G. Lovat and S. Paulotto, “Surface-wave suppression in a double-negative metamaterial grounded slab,” IEEE Ant. and Wireless Prop. Letters, vol. 2, pp. 269-272, 2003.

A. T. Devapriya and S. Robinson, “Investigation on metamaterial antenna for terahertz applications,” Journal of Microw., Opt. and Electrom. Applic., vol. 18, pp. 377-389, 2019.

S. Roy, K. L. Baishnab and U. Chakraborty, “Beam focusing compact wideband antenna loaded with mu-negative metamaterial for wireless LAN application’, Progress In Electrom. Research, vol. 83, pp. 33-44, 2018.

D. C. Ochoa, D. E. Senior, F. Lopes and E. R. Vera, “Performance analysis of a microstrip patch antenna loaded with array of metamaterial resonators,” Intern. Symposium on Ant. and Propagation (APSURSI) 2016.

P. K. Singh and G. Saini,”Log – Periodic terahertz antenna with square SRR metamaterial superstrate,” Int. Journal of Engineering Research & Technology, vol. 5, 2016.

A. A. A. Abdelrehim and H. G. Shiraz, “High performance terahertz antennas based on split ring resonator and thin wire metamaterial structures,” Microw. Opl. Technol. Lett., vol. 58, pp. 382-389, 2016.

M. Koutsoupidou, N. Uzunoglu and I. S. Karanasiou, “Antennas on metamaterial substrates as emitting components for THz biomedical imaging,” International Conference on Bioinformatics, 2012.

Q. L. Zhang, L. M. Si, Y. Huang, X. Lv and W. Zhu, “Low-index-metamaterial for gain enhancement of planar terahertz antenna,” AIP Advances, vol. 4, 2014.

S. S. Al-Bawri, H. H. goh, M. S. Islam, H. Y. Wong, M. F. Jamlos, A. Narbudowicz, M. Jusoh, T. Sabapathy, R. Khan and M. T. Islam, “Compact ultra-wideband monopole antenna loaded with metamaterial,” Sensors, vol. 20, 2020.

A. E. Hidalgo and F. M. Rizo, “Antena de microcinta con estructura híbrida metamaterial para 2.4 GHz,” Revista chilena de ingeniería, vo. 27, pp. 22-23, 2019.

F. Ma, Y. S. Lin, X Zhang and C. Lee. “Tunable multiband terahertz metamaterial using a reconfigurable electric split-ring resonator array,” Ligth: Science & Applications, vol. 3, p.e171, 2014.

E. R. Vera, G. A. Osorio, M. A. Correa and D. E. Senior, ”A submersible printed sensor based on a monopole-coupled split ring resonator for permittivity characterization,” Sensors, vol. 19, 2019.

E. Ahamed, M. R. I. Faruque, M. F. B. Mansor and M. T. Islam, “Polarization-dependent tunneled metamaterial structure with enhanced fields properties for X-band application,” Results in Physics, vol. 15, 2019.

HFSS™, “Getting Started with HFSS: Floquet Ports”, Technical Report, 2016.

R. W. Ziolkowski, “Design, fabrication, and testing of double negative metamaterials,” IEEE Trans. on Antennas and Prop., vol. 51, pp. 1516-1529, 2003.

A. B. Numan and M. S. Sharawi, “Extraction of material parameters for metamaterials using a full-wave simulator,” IEEE Trans. on Antennas and Prop., vol. 55, pp. 202-211, 2013.

M. M. Hosain, S. Kumari and A. K. Tiaway, “Compact filtenna for WLAN applications,” Journal of Microw. and Electromagnetic Applications, vol. 18, pp. 70-79, 2019.

C. A. Ballanis, “Antenna Theory: Analysis and Design,” New Jersey, 2005.

D. K. Cheng, “Field and Wave electromagnetics,” China, 1989.

J. S. Hong and M. J. Lancaster.”Couplings of micrsotrip square open-loop resonators for cross-coupled planar microwave filters,” IEEE Trans. on Microwave Theory and Techniques, vol. 44, pp. 2099-2109, 1996.

L. Cong, Y. K. Srivastava and R. Singh, “Near-field inductive coupling induced polarization control in metasurfaces,” Advanced Optical Materials, vol. 4, pp.848-852, 2016.

Y. H. Chen, C. C. Chen, A. Ishikawa, M. H. Shiao, Y. S. Lin, C. N. Hsiao, H. P. Chiang and T. Tanaka, “Interplay of mutual electric and magnetic couplings between three-dimensional split-ring resonators,” Optics Express, vol. 25, 2017.

J. Powell, “Antenna design for ultra wideband radio,” Ph.D. Dissertation, MIT, Massachusetts, EUA, 2004.

Downloads

Published

2020-07-09

How to Cite

Lima, A. M., Cunha, N. H. O. ., & da Silva, J. P. (2020). Effect of Metamaterial Cells Array on a Microstrip Patch Antenna Design. Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 19(3), AoP 327-342. https://doi.org/10.1590/2179-10742020v19i3886

Issue

Section

Regular Papers