• Filomena B. R. Mendes
  • Jean V. Leite
  • Nelson J. Batistela
  • Nelson Sadowski
  • Fredy M. S. Suárez
  • João P. de Barros Neto



Magnetic hysteresis, magnetic materials, method of genetic algorithms, non-linear least squares method


The Jiles-Atherton scalar hysteresis model presents five parameters used to represent the material tested and used to calculate the magnetic losses. This article presents a comparative analysis of the performance of two methods of identifying these parameters. In the first method, the equations of Jiles-Atherton were assembled into a single non-linear ordinary differential equation as a function of the variables of interest. An algebraic system of five equations with five unknowns is obtained by evaluating the non-linear ordinary differential equation in five points belonging to the branch of the experimental hysteresis loop. The parameters are obtained by solving this system of equations using the method of Non-Linear Least Squares (NLLS). In the second method, the inverse model of Jiles-Atherton is used to calculate the magnetic field H from the experimental values of magnetic induction B. Using the method of genetic algorithms (MGA), the objective function given by the sum of the relative error of calculated magnetic field and experimental magnetic field along the hysteresis loop is minimized. To validate methods the experimental curves were compared with calculated ones. When applying the methods, it was verified that NLLS besides providing more accurate results, it is faster when compared to MGA. In the MGA the convergence of the calculated magnitudes to the experimental magnitudes improves when one of the chromosomes of the initial population is the solution obtained applying NLLS.


[1] D. C. Jiles, J. B. Thoelke, and M. K. Devine, “Numerical determination of hysteresis parameters the modeling of
magnetic properties using the theory of ferromagnetic hysteresis,” IEEE Trans. Magn., vol. 28, no. 1, pp. 27-35, Jan.
[2] J. V. Leite, N. Sadowski, P. Kuo-Peng, N. J. Batistela, and J. P. A. Bastos, “The inverse Jiles–Atherton model
parameters identification,” IEEE Trans. Magn., vol. 39, no. 3, pp. 1397-1400, May 2003.
[3] P. Kis and A. Iványi, “Parameter identification of Jiles–Atherton model with nonlinear least-square method,” Physica
B, 343, pp. 59–64, 2004.
[4] J. V. Leite, S. L. Avila, N. J. Batistela, W. P. Carpes Jr., N. Sadowski, P. Kuo-Peng, and J. P. A. Bastos, “Real coded
genetic algorithm for Jiles–Atherton model parameters identification,” IEEE Trans. Magn., vol. 40, no. 2, pp. 888-891,
Mar. 2004.
[5] K. Chwastek and J. Szczyglowski, “Identification of a hysteresis model parameters with genetic algorithms,”
Mathematics and Computers in Simulation, vol. 71, pp. 206–211, 2006.
[6] M. Toman, G. Stumberger, and D. Dolinar, “Parameter identification of the Jiles–Atherton hysteresis model using
differential evolution,” IEEE Trans. Magn., vol. 44, no. 6, pp. 1098-1101, Jun. 2008.
[7] R. Marion, R. Scorretti, N. Siauve, M. Raulet, and L. Krähenbühl, “Identification of Jiles–Atherton model parameters
using particle swarm optimization,” IEEE Trans. Magn., vol. 44, no. 46, pp. 894-897, Jun. 2008.
[8] K. Chwastek and J. Szczygowski, “An alternative method to estimate the parameters of Jiles–Atherton model,” Journal
of Magnetism and Magnetic Materials, vol. 314, pp. 47–51, 2007.
[9] N. Sadowski, N. J. Batistela, J. P. A. Bastos, and M. Lajoie- Mazenc, “An inverse Jiles-Atherton model to take into
account hysteresis in time stepping finite element calculations,” IEEE Trans. Magn., vol. 38, no. 2, pp. 797-800, Mar.
[10] F. B. R. Mendes, J. V. Leite, N. J. Batistela, N. Sadowski, and F. M. S. Suárez, “An improved method for acquisition
of the parameters of Jiles-Atherton hysteresis scalar model using integral calculus,” Journal of Microwaves
Optoelectronics and Electromagnetic Applications, vol. 16, no.1, pp. 165-179, March 2017.
[11] K. Hoffmann, J. P. A. Bastos, J. V. Leite, N. Sadowski, and F. B. R. Mendes, “A vector Jiles-Atherton model for
improving the FEM convergence,” IEEE Transactions on Magnetics, vol. 53, no. 6, June 2017.
[12] F. B. R. Mendes, J. V. Leite, N. J. Batistela, N. Sadowski, and F. M. S. Suárez, “Insertion of a sixth parameter in JilesAtherton hysteresis scalar model and the method for parameters identification,” 17th Biennial IEEE Conference on
Electromagnetic Field Computation CEFC2016 proceedings, Miami, FL/USA.
[13] N. J. Batistela, Caracterização e Modelagem Eletromagnética de Lâminas de Aço ao Silício, Ph.D. dissertation,
Universidade Federal de Santa Catarina, Florianópolis, SC, 2001.




How to Cite

Filomena B. R. Mendes, Jean V. Leite, Nelson J. Batistela, Nelson Sadowski, Fredy M. S. Suárez, & João P. de Barros Neto. (2020). COMPARISON AND COMBINATION OF TECHNIQUES FOR DETERMINING THE PARAMETERS OF A MAGNETIC HYSTERESIS MODEL. Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 18(3), 408–426.



Regular Papers