A NEW CONDUCTIVE INK FOR MICROSTRIP ANTENNA AND BIOINSPIRED FSS DESIGNS ON GLASS AND FIBERGLASS SUBSTRATES

Authors

  • Marcelo David S. Mesquita
  • Adaildo Gomes D’Assunção
  • João Bosco L. Oliveira
  • Yuri Max Vieira Batista

DOI:

https://doi.org/10.1590/2179-10742019v18i21554

Keywords:

Conductive ink, FSS, microstrip antenna, nitrocellulose, silver ink

Abstract

This paper describes an investigation of the possibility of using a new conductive ink, instead of copper clad laminates, in the manufacturing of microstrip patch antennas on glass and fiberglass substrates and of FSS bioinspired on fiberglass substrate, for wireless communication systems. The new conductive ink is developed using synthesized nitrocellulose, which, in ethyl acetate solution, works as bonding agent and carrier for the formation of a conductive film. The load used in the fabrication process is silver metallic powder. Simulation and analysis are performed using Ansoft Designer software. Microstrip antenna and FSS prototypes are fabricated and measured for comparison purpose. Agreement is observed between simulation and measurements results.

References

[1] C. A. Balanis, Antenna Theory - Analysis and Design, New York: John Wiley & Sons, 2005.
[2] D. Unnikrishnan, D. Kaddour, S. Tedjini, E. Bihar, and M. Saadaoui, “CPW-fed inkjet printed UWB antenna on ABS-PC for integration
in molded interconnect devices technology,” IEEE Antennas Wirel. Propag. Lett., vol. 14, pp. 1125-1128, 2015.
[3] W. Su, B. Cook, M. Tentzeris, C. Mariotti, and L. Roselli, “A novel inkjet-printed microfluidic tunable coplanar patch antenna,” Proc.
IEEE Antennas Propag. Soc. Int. Symp. (APSURSI), Memphis, TN, USA, pp. 858-859, 2014.
[4] W. G. Whittow, A. Chauraya, J. C. Vardaxoglou, Y. Li, R. Torah, K. Yang, S. Beeby, and J. Tudor, “Inkjet-printed microstrip patch
antennas realized on textile for wearable applications,” IEEE Antennas Wirel. Propag. Lett, vol. 13, pp. 71-74, 2014.
[5] J. Bito, B. Tehrani, B. Cook, and M. Tentzeris, “Fully inkjet-printed multilayer microstrip patch antenna for Ku-band applications,”
Proc. IEEE Antennas Propag. Soc. Int. Symp. (APSURSI), Memphis, TN, USA, pp. 854-855, 2014.
[6] S. V. Stovbun, S. N. Nikol'skii, P. V. Mel'nikov, M. G. Mikhaleva, A. N. Shchegolikhin, D. V. Zlenko, V. A. Tverdislov, D. S.
Gerasimov, and A. D. Rogozin, “Chemical physics of cellulose nitration,” Russ. J. Phys. Chem. B, vol. 10, no. 2, pp. 245-259, 2016.
[7] L. C. Duarte, P. L. Juchem, G. M. Pulz, T. M. M. Brum, N. Chodur, A. Liccardo, A. C. Fischer, and R. B. Acauan, “Aplicações de
microscopia eletrônica de varredura (MEV) e sistema de energia dispersiva (EDS) no Estudo de Gemas: Exemplos Brasileiros (in
Portuguese),” Pesquisas em Geociências, vol. 30, no. 2, pp. 3-15, 2003.
[8] V. Junqueira, Percolação e Caracterização Elétrica em Tintas Condutoras, Ph.D. Dissertation (in Portuguese), Federal University of
Itajubá, MG, Brazil, 2012.
[9] S. R. Broadbent and J. M. Hammersley, “Percolation processes. I. Crystal and mazes”, Math. Proc. Camb. Philos. Soc., vol. 53, no. 3,
pp. 629-641, 1957.
[10] A. G. Hunt and R. Ewing, Percolation Theory for Flow in Porous Media (Lect. Notes Phys., 771), Germany: Springer, 2009.
[11] G. Kumar and K. P. Ray, Broadband Microstrip Antennas, USA: Artech House, 2003.
[12] M. A. Matin and A. I. Sayeed, “A design rule for inset-fed rectangular microstrip patch antenna,” WSEAS Trans. Commun., vol. 9, no.
1, 2010.
[13] R. C. Filho, J. H. Araújo, M. F. Ginani, A. G. D'Assunção Junior, R. A. Martins, A. G. D'Assunção, and L. M. Mendonça, “Simulation
and measurement of inset‐fed microstrip patch antennas on BiNbO4 substrates”, Microw. Opt. Technol. Lett., vol. 52, pp. 1034-1036,
2010.
[14] E. E. C. Oliveira, M. S. Vieira, P. H. F. Silva, M. A. Oliveira, and A. G. D'Assunção, “Dielectric resonator antenna based in ZrTiO with
high dielectric constant,” J. Microw. Optoelectron. Electromagn. Appl., vol. 14, no. 2, 2015.
[15] B. A. Munk, Frequency Selective Surfaces: Theory and Design, Wiley, New York, 2000.
[16] T. K. Wu, Frequency-Selective Surface and Grid Array, New York: John Wiley & Sons, 1995.
[17] P. B. C. Medeiros, V. P. Silva Neto, and A. G. D'Assunção, “A compact and stable design of FSS with radial slit circular elements using
an iterative method,” Microw. Opt. Technol. Lett., vol. 57, pp. 729-733, 2015.
[18] M. R. Silva, P. H. F. Silva, C. L. Nóbrega, and A. G. D'Assunção, “Optimal design of frequency selective surfaces with fractal motifs,”
IET Microw. Antennas Propag., vol. 8, pp. 627-631, 2014.
[19] V. P. Silva Neto, A. G. D'Assuncao, and H. Baudrand, “Analysis of finite size nonuniform stable and multiband FSS using a
generalization of the WCIP method,” IEEE Trans. Electromag. Compat., vol. 60, no. 6, pp. 1802-1810, 2018.
[20] D. B. Brito, A. G. D’Assunção, R. H. C. Maniçoba, and X. Begaud, “Metamaterial inspired Fabry-Pérot antenna with cascaded frequency
selective surfaces,” Microw. Opt. Technol. Lett., vol. 55, pp. 981-985, 2013.
[21] I. S. Syed, Y. Ranga, L. Matekovits, K. P. Esselle, and S. G. Hay, "A single-layer frequency-selective surface for ultrawideband
electromagnetic shielding," IEEE Trans. Electromagn. Compat., vol. 56, no. 6, pp. 1404-1411, 2014.
[22] S. N. Zabri, R. Cahill, and A. Schuchinsky, "Polarisation independent split ring frequency selective surface," Electron. Lett., vol. 49, no.
4, pp. 245-246, 2013.
[23] R. Sivasamy, L. Murugasamy, M. Kanagasabai, E. F. Sundarsingh, and M. Gulam Nabi Alsath, "A low-profile paper substrate-based
dual-band FSS for GSM shielding," IEEE Trans. Electromagn. Compat., vol. 58, no. 2, pp. 611-614, 2016.

Downloads

Published

2020-04-10

How to Cite

Marcelo David S. Mesquita, Adaildo Gomes D’Assunção, João Bosco L. Oliveira, & Yuri Max Vieira Batista. (2020). A NEW CONDUCTIVE INK FOR MICROSTRIP ANTENNA AND BIOINSPIRED FSS DESIGNS ON GLASS AND FIBERGLASS SUBSTRATES. Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 18(2), 227-245. https://doi.org/10.1590/2179-10742019v18i21554

Issue

Section

Regular Papers