• André N. da Silva
  • Rafaela G. G. de Carvalho
  • Adaildo G. D’Assunção Junior




Slotted microstrip, slotted feeder, impedance matching, microstrip antenna, WCIP


A new technique is presented for designing microstrip patch antennas with very good input impedance matching. Analysis is carried out for 1.78 GHz, 2.42 GHz and 3.46 GHz rectangular patch antennas printed on low-cost glass fiber substrates (FR-4), mounted on a ground plane and fed by a microstrip line. The antenna impedance matching is obtained using a slotted microstrip line feeder. The use of the proposed impedance matching technique showed considerable improvement from the reflection coefficient point of view, with reduction of about 20 dB at the resonant frequency, without modifying the original dimensions of the antenna patch elements or the width of the feeding microstrip line. Numerical characterization is carried out using Ansoft Designer software and iterative method WCIP. Prototypes are fabricated and measured, for validation purpose, showing good agreement when compared to simulated results.


[1] C. A. Balanis, Antenna Theory: Analysis and Design, John Wiley & Sons, 2005.
[2] M. S. Alam, Y. Wang, N. Nguyen-Trong, and A. Abbosh, "Compact circular reconfigurable antenna for high
directivity and 360° beam scanning," IEEE Antennas Wirel. Propag., pp. 1492-1496, 2018.
[3] E. J. B. Rodrigues, A. G. D'Assunção, and H. W. C. Lins, “Fast and accurate synthesis of electronically reconfigurable
annular ring monopole antennas using particle swarm optimisation and artificial bee colony algorithms”, IET Microw.
Antennas Propag., vol. 10, pp. 362-369, 2016.
[4] E. E. C. Oliveira, P. H. D. F. Silva, A. L. P. S. Campos, and A. G. D'Assunção, “Small-size quasi-fractal patch antenna
using the Minkowski curve”, Microw. Opt. Technol. Lett., pp. 805-809, 2010.
[5] D. R. Minervino, A. G. D'Assunção, and C. Peixeiro, “Mandelbrot fractal microstrip antennas,” Microw. Opt. Technol.
Lett., vol. 58, pp. 83-86, 2016.
[6] N. N. Yoon, N. Ha‐Van, and C. Seo, “High‐gain and wideband aperture coupled feed patch antenna using four split
ring resonators”, Microw. Optical Technol. Lett., pp. 1997-2001, 2018.
[7] D. B. Brito, X. Begaud, A. G. D’Assunção, and H. C. C. Fernandes, “Ultra wideband monopole antenna with split ring
resonator for notching frequencies”, Proc. 4th Europ. Conf. Antennas Propagation (EuCAP 2010), Barcelona, Spain,
vol. 1. pp. 1-5, 2010.
[8] D. B. Brito, A. G. D’Assunção, R. H. C. Maniçoba, and X. Begaud, “Metamaterial inspired Fabry-Pérot antenna with
cascaded frequency selective surfaces,” Microw. Opt. Technol. Lett., vol. 55, pp. 981-985, 2013.
[9] N.-W. Liu, L. Zhu, W.-W. Choi, and J.-D. Zhang, “A Low-profile differentially fed microstrip patch antenna with
broad impedance bandwidth under triple-mode resonance”, IEEE Antennas Wirel. Propag. Lett., pp. 1478-1482, 2018.
[10] S. Mulla and S. S. Deshpande, “Compact multiband antenna fed with wideband coupled line impedance transformer for
improvement of impedance matching”, Microw. Opt. Technol. Lett., no. 59, pp. 2341-2348, 2017.
[11] M. Mustaqim, B. A. Khawaja, A. A. Razzaqi, S. S. H. Zaidi, S. A. Jawed, and S. H. Qazi, “Wideband and high gain
antenna arrays for UAV‐to‐UAV and UAV‐to‐ground communication in flying ad‐hoc networks”, Microw. Opt.
Technol. Lett., pp. 1164-1170, 2018.
[12] A. T. Abed and M. S. J. Singh, “Slot antenna single layer fed by step impedance strip line for Wi-Fi and Wi-Max
applications”, Electron. Lett., vol. 52, pp. 1196-1198, 2016.
[13] A. Gorai, M. Pal and R. Ghatak, “A Compact fractal-shaped antenna for ultrawideband and bluetooth wireless systems
with WLAN rejection functionality”, IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 2163-2166, 2017.
[14] H. Aliakbari, A. Mallahzadeh, and S. M. A. Nezhad, “A tri‐band, small size radio frequency identification tag antenna
with U‐shaped slots”, Microw. Opt. Technol. Lett., no. 54, pp. 1975-1978, 2012.
[15] C. Mbinack, E. Tonye, and D. Bajon, “Microstrip‐line theory and experimental study for the characterization of the
inset‐fed rectangular microstrip‐patch antenna impedance”, Microw. Opt. Technol. Lett., no. 57, pp. 514-518, 2015.
[16] H. L. Peng, Z. Tang, Y. P. Zhang and J. F. Mao, “Cavity model analysis of a dual-probe-feed circular microstrip patch
antenna”, IEEE Antennas Wirel. Propag. Lett., vol. 15, pp. 44-47, 2016.
[17] M. Titaouine, A. G. Neto, H. Baudrand, and F. Djahli, “WCIP method applied to active frequency selective surfaces,”
J. Microw. Optoelectron. Eletromagn. Appl., vol. 6, pp. 1-16, 2007.
[18] M. Titauoine, N. Raveu, A. G. Neto, and H. Baudrand, “The WCIP method: theory and applications,” Advances in
Engineering Research, vol. 6, pp. 143-176, 2013.
[19] H. Baudrand, M. Titaouine, and N. Raveu, “The Wave Concept in Electromagnetism and Circuits: Theory and
Applications”, Wiley, 2016.
[20] A. G. D’Assunção Jr., Analysis of integrated circuits and FSS using WCIP for applications at microwaves and terahertz
bands (in Portuguese), Ph.D. Dissertation, Federal University of Campina Grande, PB, Brazil, 2012.
[21] V. P. S. Neto, A. G. D'Assunção, and H. Baudrand, “Analysis of finite size nonuniform stable and multiband FSS using
a generalization of the WCIP method”, IEEE Trans. Electromagn. Compat., vol. 60, no. 6, pp. 1802-1810, Dec. 2018.
[22] A. G. D'Assunção Jr., G. Fontgalland, A. Gomes Neto, and Henri Baudrand, “Frequency selective surface filters with
polarized band pass/band reject performances,” Microw. Opt. Technol. Lett., no. 56, pp. 483-487, 2014.
[23] “Microstrip Patch Antenna Calculator”, EM: Talk - Electromagnetics & Microwave Engineering, 2006. [Online].
Available: http://www.emtalk.com/mpacalc.php. [Accessed 30 September 2018].




How to Cite

André N. da Silva, Rafaela G. G. de Carvalho, & Adaildo G. D’Assunção Junior. (2020). A NEW TECHNIQUE USING AXIALLY SLOTTED MICROSTRIP LINE FOR ANTENNA IMPEDANCE MATCHING DESIGNS. Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 18(2), 208-218. https://doi.org/10.1590/2179-10742019v18i21556



Regular Papers