• Diogo V N Coelho
  • Pablo Marciano
  • Thiago V N Coelho
  • Marcelo Segatto
  • Maria Jose Pontes



DWDM, PON, spectral-efficiency, frequency interleaving


In this work, we introduce a new concept of frequency interleaving applied to passive optical networks based in Dense Wavelength Division Multiplexing (DWDM). In order to explore colorless ONUs approach, a single and centralized optical source is used to create the interleaved wavelengths for the downstream and upstream path. In this case, frequency comb generation implemented by recirculating frequency shifting technique allowed the creation of all the wavelengths used in each path. The reception operation is accomplished by introducing, at the ONU side, a combination of a set of optical passive elements. The system with 4 × 12.5 Gbit/s NRZ-OOK modulation format were simulated through 20 km of standard single mode ?ber link in both transmission paths. In order to guarantee a high quality optical frequency comb source, the optical carrier-to-noise-ratio (OCNR) was evaluated as well as BER (bit error rate), to analyze the system performance.


[1] S. Bindhaiq A. Sahmah, M. Supa'at, N. Zulkifli, A. B. Mohammad, R. Q. Shaddad, M. A. Elmagzoub and A. Faisal.
“Recent development on time and wavelength-division multiplexed passive optical network (TWDM-PON) for nextgeneration passive optical network stage 2 (NG-PON2),” Optical Switching and Networking, vol. 15, pp. 53-56,
January 2015, doi: 10.1016/j.osn.2014.06.007
[2] A. Cai, Z. Fan, K. Xu, M. Zukerman and C. Chan, "Elastic versus WDM networks with dedicated multicast protection,"
in IEEE/OSA Journal of Optical Communications and Networking, vol. 9, no. 11, pp. 921-933, Nov. 2017.
doi: 10.1364/JOCN.9.000921
[3] Y. Sakaue, K. Taguchi, K. Hara, T. Shitaba, T. Taniguchi, S. Nishihara, K. Asaka, K. Suzuki and A. Otaka,
"Demonstration of NG-PON2 Coexisting with Other Systems on Same ODN by Using WDM filter with Low Power
Penalty of under 1.0 dB," ECOC 2016; 42nd European Conference on Optical Communication, Dusseldorf, Germany,
pp. 1-3, 2016.
[4] D. Nesset, "NG-PON2 Technology and Standards," in Journal of Lightwave Technology, vol. 33, no. 5, pp. 1136-1143,
1 March1, 2015. doi: 10.1109/JLT.2015.2389115.
[5] Coutinho, Bruno C., Lima, Fabio O., Lima Jr, Ivan T., Garcia, Anilton Salles and Segatto, Marcelo E. V. A Multilayer
Approach for Optical Network Planning. Journal of Microwaves, Optoelectronics and Electromagnetic
Applications, vol. 15, no.1, pp. 49-64, 2016. doi:10.1590/2179-10742016v15i1548
[6] H. Nejadriahi and V. J. Sorger, "On-chip Integrated All-Optical Fast Fourier Transform: Design and Analysis,"
in Frontiers in Optics 2017, OSA Technical Digest (online) (Optical Society of America, 2017), paper JW4A.46.
[7] J. K. George, H. Nejadriahi and V. J. Sorger, "Towards On-Chip Optical FFTs for Convolutional Neural
Networks," 2017 IEEE International Conference on Rebooting Computing (ICRC), Washington, DC, pp. 1-4, 2017.
doi: 10.1109/ICRC.2017.8123675
[8] V. Torres-Company and A. M. Weiner, "Optical frequency comb technology for ultra-broadband radio-frequency
photonics," Laser Photonics Rev. vol. 8, no. 3, pp. 368–393, 2014. doi: 10.1002/lpor.201300126
[9] V. Ataie, E. Temprana, L. Liu, E. Myslivets, B. P. Kuo, N. Alic and S. Radic, "Ultrahigh Count Coherent WDM
Channels Transmission Using Optical Parametric Comb-Based Frequency Synthesizer," in Journal of Lightwave
Technology, vol. 33, no. 3, pp. 694-699, 1 Feb.1, 2015. doi: 10.1109/JLT.2015.2388579
[10] T. Shao, R. Zhou, V. Vujicic, M. D. G. Pascual, P. M. Anandarajah and L. P. Barry, "100 km coherent Nyquist
ultradense wavelength division multiplexed passive optical network using a tunable gain-switched comb source,"
in IEEE/OSA Journal of Optical Communications and Networking, vol. 8, no. 2, pp. 112-117, Feb. 2016.
doi: 10.1364/JOCN.8.000112
[11] X. Zhou, X. Zheng, H. Wen, H. Zhang and B. Zhou, "Generation of broadband optical frequency comb with rectangular
envelope using cascaded intensity and dual-parallel modulators," Opt. Commun., vol. 313, pp. 356-359, 2014.
[12] C. Lei, Y. Yu, M. Chen, H. Chen, S. Yang and S. Xie, "Temporally controlled wideband optical frequency comb
generation based on recirculating frequency shifting," Microwave Photonics (MWP) and the 2014 9th Asia-Pacific
Microwave Photonics Conference (APMP) 2014 International Topical Meeting on, Sendai, pp. 272-275. 2014. doi:
[13] D. Hillerkuss, T. Schellinger, M. Jordan, C. Weimann, F. Parmigiani, B. Resan, K. Weingarten, S. Ben-Ezra, B.
Nebendahl, C. Koos, W. Freude and J. Leuthold, "High-Quality Optical Frequency Comb by Spectral Slicing of Spectra
Broadened by SPM," in IEEE Photonics Journal, vol. 5, no. 5, pp. 7201011-7201011, Oct. 2013, Art no. 7201011.
doi: 10.1109/JPHOT.2013.2280524
[14] R. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini and B. Goebel, "Capacity Limits of Optical Fiber Networks,"
in Journal of Lightwave Technology, vol. 28, no. 4, pp. 662-701, Feb.15, 2010. doi: 10.1109/JLT.2009.2039464
[15] R. J. L. Ferreira, D. M. Dourado, M. M. Rodrigues, M. L. Rocha, S. M. Rossi and D. M. Pataca, "All-optical fast
fourier transform for processing an optical OFDM superchannel," 2017 SBMO/IEEE MTT-S International Microwave
and Optoelectronics Conference (IMOC), Aguas de Lindoia, 2017, pp. 1-5.doi: 10.1109/IMOC.2017.8121075
[16] D. Hillerkuss, M. Winter, M. Teschke, A. Marculescu, J. Li, G. Sigurdsson, K. Worms, S. Ben Ezra, N. Narkiss, W.
Freude, and J. Leuthold, "Simple all-optical FFT scheme enabling Tbit/s real-time signal processing," Opt. Express 18,
pp. 9324-9340, 2010.
[17] Gerd Keiser, “Optical Fiber Communications”, 3rd ed., MacGraw-Hill, New York, 2000, pp. 396-399.
[18] P. R. N. Marciano, D. V. N. Coelho, J. A. L. Silva, M. J. Pontes, and M. E. V. Segatto, "A New All-Optical OFDM
Architecture for NG-PON2," in Latin America Optics and Photonics Conference, OSA Technical Digest (Optical
Society of America, 2018), paper W3D.4.




How to Cite

Diogo V N Coelho, Pablo Marciano, Thiago V N Coelho, Marcelo Segatto, & Maria Jose Pontes. (2020). FREQUENCY DOMAIN INTERLEAVING FOR DENSE WDM PASSIVE OPTICAL NETWORK. Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 18(2), 196–207.



Regular Papers