COMPUTATIONAL MODEL AND PARAMETER EXTRACTION OF HIGH SPEED SEMICONDUCTOR OPTICAL AMPLIFIER SPACE SWITCHES

Authors

  • T. Sutili
  • P. Rocha
  • Ernesto M. M. Barrientos
  • A. C. Bordonalli
  • C. M. Gallep
  • E. Conforti

DOI:

https://doi.org/10.1590/2179-10742018v17i41404

Keywords:

Electro-optical devices, electro-optic switches, equivalent circuit, semiconductor optical amplifier, simulation

Abstract

A characterization technique including a mathematical model involving extensive computational resources is introduced to study the behavior of an electro-optical space switch based on a semiconductor optical amplifier (SOA). The model encompasses the precise emulation of device nonlinearities and its transient performance, allowing the characterization of its transient response. The calibration process includes the evaluation of parasites from the SOA connection, mounting, and encapsulation and parameter extraction of the SOA active cavity. The numerical results are compared with experimental data for various operational conditions, with close similarities. The characterization technique can be adapted to other electro-optical devices, such as directed modulated lasers, amplitude modulators, and electro-optical switches.

References

[1] H. Meyer, J. C. Sancho, M. Mrdakovic, W. Miao, N. Calabretta, Optical packet switching in HPC: An analysis of
applications performance, Future Generation Computer Systems doi:10.1016/j.future.2017.02.041.
[2] B. D. Feris, P. Gravey, P. Morel, M. L. Moulinard, M. Morvan, A. Sharaiha, Dimensioning of 112G optical-packetswitching-based interconnects for energy-efficient data centers, IEEE/OSA Journal of Optical Communications and
Networking 9 (4) (2017) B124–B136. doi:10.1364/JOCN.9.00B124.
[3] S. Ni, B. Wu, Y. Liu, Characteristics of silicon-based Sagnac optical switches using magneto-optical micro-ring array,
Fiber and Integrated Optics 37 (1) (2018) 12–20. doi:10.1080/01468030.2017.1423135.
[4] J. Renaudier, A. C. Meseguer, A. Ghazisaeidi, P. Tran, R. R. Muller, Brenot, A. Verdier, F. Blache, K. Mekhazni, B.
Duval, H. Debregeas, M. Achouche, A. Boutin, F. Morin, L. Letteron, N. Fontaine, Y. Frignac, G. Charlet, First 100-
nm continuous-band WDM transmission system with 115Tb/s transport over 100km using novel ultra-wideband
semiconductor optical amplifiers, in: Optical Communication, 2017. 43rd European Conference on, Vol. 1, 2017, pp. 1–
3.
[5] Y. M. Zhang, Y. Liu, Z. K. Zhang, Z. P. Zhao, Y. Tian, N. H. Zhu, Reconfigurable WDM-PON empowered by a lowcost 8-channel directly modulated laser module, Optoelectronics Letters 13 (6) (2017) 423–426. doi:10.1007/s11801-
017-7159-6.
[6] C. Zhang, T. Ning, J. Li, C. Li, X. He, L. Pei, Simultaneous MMW generation and up-conversion for WDM-ROF
systems based on FP laser, Optics & Laser Technology 84 (2016) 94 – 101. doi:10.1016/j.optlastec.2016. 05.010.
[7] T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, All-optical wavelength conversion by
semiconductor optical amplifiers, Journal of Lightwave Technology 14 (6) (1996) 942–954. doi: 10.1109/50.511594.
[8] F. Saadaoui, M. Fathallah, A. M. Ragheb, M. I. Memon, H. Fathallah, S. A. Alshebeili, Optimizing OSSB generation
using semiconductor optical amplifier (SOA) for 5G millimeter wave switching, IEEE Access 5 (2017) 6715–6723.
doi:10.1109/ACCESS.2017.2683064.
[9] Z. Shen, L. Wang, X. Wang, Y. Cao, X. Feng, B. ou Guan, Tunable dual wavelength single-longitudinal-mode fiber
laser based on spectral narrow-ing effect in a nonlinear semiconductor optical amplifier, Optics & Laser Technology 94
(2017) 72 – 76. doi:10.1016/j.optlastec.2017.03.020.
[10] X. Zheng, O. Raz, N. Calabretta, D. Zhao, R. Lu, Y. Liu, Multiport InP monolithically integrated all-optical wavelength
router, Optics Letters 41 (16) (2016) 3892–3895. doi:10.1364/OL.41.003892.
[11] A. Chiuchiarelli, C. M. Gallep, E. Conforti, Fabry Perot laser-based optical switch for multicast transmission in
bidirectional optical access networks, Microwave and Optical Technology Letters 58 (6) (2016) 1466–1469. doi:
10.1002/mop.29823.
[12] N. S. Ribeiro, C. M. Gallep, E. Conforti, Semiconductor optical amplifier cavity length impact over data
erasing/rewriting, Microwave and Optical Technology Letters 55 (5) (2013) 998–1001. doi:10.1002/mop.27496.
[13] A. Kotb, K. E. Zoiros, Performance analysis of all-optical XOR gate with photonic crystal semiconductor optical
amplifier-assisted MachZehnder interferometer at 160 Gb/s, Optics Communications 402 (2017) 511–517.
doi:10.1016/j.optcom.2017.06.050.
[14] E. Dimitriadou, K. Zoiros, Proposal for ultrafast all-optical XNOR gate using single quantum-dot semiconductor optical
amplifier-based Mach Zehnder interferometer, Optics & Laser Technology 45 (2013) 79 – 88. doi:
10.1016/j.optlastec.2012.07.024.
[15] D. Mandal, S. Mandal, S. K. Garai, Alternative approach of developing all-optical Fredkin and Toffoli gates, Optics &
Laser Technology 72 (2015) 33 – 41. doi:10.1016/j.optlastec.2015.03.010.
[16] S. Mandal, D. Mandal, M. K. Mandal, S. K. Garai, Design of optical quaternary adder and subtractor using polarization
switching, Journal of Optics. doi:10.1007/s12596-018-0460-3.
[17] D. Brunina, D. Liu, K. Bergman, An energy-efficient optically connected memory module for hybrid packet- and
circuit-switched optical networks, IEEE Journal of Selected Topics in Quantum Electronics 19 (2). doi:
10.1109/JSTQE.2012.2224096.
[18] T. Tanemura, I. M. Soganci, T. Oyama, T. Ohyama, S. Mino, K. A. Williams, N. Calabretta, H. J. S. Dorren, Y.
Nakano, Large-capacity compact optical buffer based on InP integrated phased-array switch and coiled fiber delay
lines, Journal of Lightwave Technology 29 (4) (2011) 396–402. doi:10.1109/JLT.2010.2102338.
[19] G. Berrettini, G. Meloni, L. Poti, A. Bogoni, All-optical variable buffer based on semiconductor optical amplifier, IEEE
Journal of Quantum Electronics 47 (4) (2011) 510–516. doi:10.1109/JQE.2010.2092752.
[20] W. Yongjun, X. Xiangjun, S. Chao, Multichannel packets buffering in cascaded double-loop optical buffer based on the
pure phase switching of gain-transparent semiconductor optical amplifier, Optical Engineering 53.
doi:10.1117/1.OE.53.1.016101.
[21] M. Matsuura, F. Gomez-Agis, N. Calabretta, O. Raz, H. J. S. Dorren, 320to-40-Gb/s optical demultiplexing using fourwave mixing in a quantum dot SOA, IEEE Photonics Technology Letters 24 (2) (2012) 101–103. doi:
10.1109/LPT.2011.2173672.
[22] R. Stabile, N. Calabretta, K. A. Williams, Switch-filter wavelength selector: simulation and experiment, IET
Optoelectronics 8 (1) (2014) 1–10. doi: 10.1049/iet-opt.2013.0084.
[23] G. Chen, L. Xi, Y. Ma, L. Sun, X. Zhang, Regeneration of DQPSK signals using semiconductor optical amplifier-based
phase regenerator, in: International Conference on Advanced Infocom Technology 2011 (ICAIT 2011), 2011.
doi:10.1049/cp.2011.1081.
[24] G. Gavioli, P. Bayvel, Novel 3R regenerator based on polarization switching in a semiconductor optical amplifierassisted fiber Sagnac interferometer, IEEE Photonics Technology Letters 15 (9) (2003) 1261–1263. doi:10.
1109/LPT.2003.816700.
[25] P. Vorreau, A. Marculescu, J. Wang, G. Bottger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S.
Tsadka, W. Freude, J. Leuthold, Cascadability and regenerative properties of SOA all-optical DPSK wavelength
converters, IEEE Photonics Technology Letters 18 (18) (2006) 1970– 1972. doi:10.1109/LPT.2006.880714.
[26] Y. Zhan, M. Zhang, M. Liu, L. Liu, X. Chen, All-optical QPSK signal regeneration based on XPM in semiconductor
optical amplifier, in: 2012 Asia Communications and Photonics Conference (ACP), 2012, pp. 1–3.
[27] P. Rocha, C. M. Gallep, E. Conforti, All-optical mitigation of amplitude and phase-shift drift noise in semiconductor
optical amplifiers, Optical Engineering 54. doi:10.1117/1.OE.54.10.106110.
[28] A. Shacham, K. Bergman, An experimental validation of a wavelength striped, packet switched, optical interconnection
network, Journal of Lightwave Technology 27 (7) (2009) 841–850. doi:10.1109/JLT.2008.928541.
[29] A. Farmani, M. Farhang, M. H. Sheikhi, High performance polarization independent quantum dot semiconductor
optical amplifier with 22dB fiber to fiber gain using mode propagation tuning without additional polarization controller,
Optics & Laser Technology 93 (2017) 127 – 132. doi:10.1016/j.optlastec.2017.02.007.
[30] R. C. Figueiredo, N. S. Ribeiro, A. M. O. Ribeiro, C. M. Gallep, E. Conforti, Hundred-picoseconds electro-optical
switching with semiconductor optical amplifiers using multi-impulse step injection current, Journal of Lightwave
Technology 33 (1) (2015) 69–77. doi:10.1109/JLT.2014.2372893.
[31] A. Ehrhardt, M. Eiselt, G. Grossopf, L. Kuller, R. Ludwig, W. Pieper, Schnabel, H. G. Weber, Semiconductor laser
amplifier as optical switch-ing gate, Journal of Lightwave Technology 11 (8) (1993) 1287–1295. doi:
10.1109/50.254087.
[32] M. Renaud, M. Bachmann, M. Erman, Semiconductor optical space switches, IEEE Journal of Selected Topics in
Quantum Electronics 2 (2) (1996) 277–288. doi:10.1109/2944.577378.
[33] R. C. Figueiredo, T. Sutili, N. S. Ribeiro, C. M. Gallep, E. Conforti, Semiconductor optical amplifier space switch with
symmetrical thin-film resistive current injection, Journal of Lightwave Technology 35 (2) (2017) 280–287.
doi:10.1109/JLT.2016.2635202.
[34] H. Wang, E. T. Aw, K. A. Williams, A. Wonfor, R. V. Penty, I. H. White, Lossless multistage SOA switch fabric using
high capacity monolithic 4x4 SOA circuits, in: 2009 Conference on Optical Fiber Communication, 2009, pp. 1–3.
[35] N. S. Ribeiro, A. L. Toazza, C. M. Gallep, E. Conforti, Rise time and gain fluctuations of an electro-optical amplified
switch based on multipulse injection in semiconductor optical amplifiers, IEEE Photonics Technology Letters 21 (12)
(2009) 769–771. doi:10.1109/LPT.2009.2017731.
[36] R. C. Figueiredo, E. C. Magalhes, N. S. Ribeiro, C. M. Gallep, E. Conforti, Equivalent circuit of a semiconductor
optical amplifier chip with the bias current influence, in: 2011 SBMO/IEEE MTT-S International Microwave and
Optoelectronics Conference (IMOC 2011), 2011, pp. 852–856. doi: 10.1109/IMOC.2011.6169263.
[37] I. Sengupta, A. Das Barman, Investigation of inter-channel crosstalk mitigation by assist light in a toad switch by using
electrical equivalent circuit model of soa, Optical and Quantum Electronics 47 (2) (2015) 331-350. doi:10.1007/s11082-
014-9916-0.
[38] W. Mathlouthi, P. Lemieux, M. Salsi, A. Vannucci, A. Bononi, L. A. Rusch, Fast and efficient dynamic wdm
semiconductor optical amplifier model, Journal of Lightwave Technology 24 (11) (2006) 4353-4365.
doi:10.1109/JLT.2006.884217.
[39] M. J. Connelly, Wideband semiconductor optical amplifier steady-state numerical model, IEEE Journal of Quantum
Electronics 37 (3) (2001) 4390-447. doi:10.1109/3.910455.
[40] A. D. Barman, M. Scaffardi, S. Debnath, L. Pot, A. Bogoni, Design tool and its experimental validation for soa-based
photonic signal processing, Optical Fiber Technology 15 (1) (2009) 39-49. doi:10.1016/j.yofte.2008.04.002.
[41] Mathworks Simulink, [www.mathworks.com/products/simulink.html].
[42] VPIphotonics, [http://www.vpiphotonics.com/index.php].
[43] R. Tucker, D. Pope, Circuit modeling of the effect of diffusion on damping in a narrow-stripe semiconductor laser,
IEEE Journal of Quantum Electronics19 (7) (1983) 1179–1183. doi:10.1109/JQE.1983.1072005.
[44] R. C. Figueiredo, N. S. Ribeiro, C. de Mello Gallep, E. Conforti, Frequency and time-domain simulations of
semiconductor optical amplifiers using equivalent circuit modeling, Optical Engineering 54. doi:10.1117/1.OE.
54.11.114107.
[45] R. C. Figueiredo, N. S. Ribeiro, C. M. Gallep, E. Conforti, Bias current influence on semiconductor optical amplifier’s
equivalent circuit, Optics Communications 336 (2015) 153 – 159. doi:10.1016/j.optcom.2014.09. 069.
[46]R. C. Figueiredo, E. C. Magalhes, N. S. Ribeiro, C. M. Gallep, E. Conforti, Equivalent circuit of a semiconductor
optical amplifier chip with the bias current influence, in: 2011 SBMO/IEEE MTT-S International Microwave and
Optoelectronics Conference (IMOC 2011), 2011, pp. 852–856. doi: 10.1109/IMOC.2011.6169263.
[47] P. Rocha, C. M. Gallep, T. Sutili, E. Conforti, Calibration of TLM model for semiconductor optical amplifier by
heuristic parameters’ extraction”, Journal of Microwaves, Optoelectronics and Electromagnetic
Applications, vol. 17, n° 2, pp. 260-267, 2018.
[48] S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, 3rd Edition, Wiley Inter science publication, John Wiley &
Sons, 2007.
[49] VPI Transmission Maker, Photonics circuits users manual, VPI photonics.
[50] C. M. Gallep, E. Conforti, Reduction of semiconductor optical amplifier switching times by pre-impulse step-injected
current technique, IEEE Photonics Technology Letters 14 (7) (2002) 902–904. doi:10.1109/LPT.2002.1012379.

Downloads

Published

2020-04-09

How to Cite

T. Sutili, P. Rocha, Ernesto M. M. Barrientos, A. C. Bordonalli, C. M. Gallep, & E. Conforti. (2020). COMPUTATIONAL MODEL AND PARAMETER EXTRACTION OF HIGH SPEED SEMICONDUCTOR OPTICAL AMPLIFIER SPACE SWITCHES. Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 17(4), 646–660. https://doi.org/10.1590/2179-10742018v17i41404

Issue

Section

Regular Papers