A REVIEW OF GROUND PENETRATING RADAR ANTENNA DESIGN AND OPTIMIZATION

Authors

  • X. L. Travassos
  • S. L. Avila
  • R. L. da S. Adriano
  • N. Ida

DOI:

https://doi.org/10.1590/2179-10742018v17i31321

Keywords:

GPR Antenna, design, optimization

Abstract

Ground Penetrating Radar is a complex non destructive evaluation technique where the antenna is the most critical part. The antenna is responsible for transmition and reception of waves at the proper level and frequencies defined in the GPR system specifications. Important GPR features such as resolution and penetration depth depend on its characteristics. In this context, this work outlines the fundamental GPR system theory in order to discuss procedures for improving antenna design and optimization for GPR applications.

References

[1] “Multilateral Recognition Agreement,” International Committee for Non-Destructive Testing (ICNDT), Vienna,
Austria, Set. 2017.
[2] ASTM, Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation, D6432,
May, 2011, doi: 10.1520/D6432-11.
[3] E. C. Utsi, Ground Penetrating Radar, Theory and Practice, Butterworth-Heinemann, pp. 224, 1st ed., 2017, ISBN:
9780081022160
[4] H. Jol, Ground Penetrating Radar Theory and Applications, Elsevier Science, pp. 509, 1st ed., 2009, ISBN:
9780444533487
[5] P. Maijala and T. Herronen, “Benchmarking of GPR Equipment for Road Surveys,” MaraNord Work Package 3
Report, Oct. 2011.
[6] DIGISOIL, “Final Report Summary – integrated system of data collection technologies for mapping soil properties,”
FP7-ENV-2007-1, Community Research and Development Information Service (CORDIS), European Commission,
Mar. 2017.
[7] C. Warren and A. Giannopoulos (2016), “Experimental and Modeled Performance of a Ground Penetrating Radar
Antenna in Lossy Dielectric”, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, v.
9, n. 1, pp. 29-26, doi:10.1109/JSTARS.2015.2430933.
[8] M. Reza M. Ardekani, D. C. Jacques and S. Lambot (2016), “A Layered Vegetation Model for GPR Full-Wave
Inversion”, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, v. 9, n. 1, pp. 18-29,
doi:10.1109/JSTARS.2015.2418093.
[9] R. Q. and L. Liu (2016), “Internal Structure of Sand Dunes in the Badain Jaran Desert Revealed by GPR”, IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing, v. 9, n. 1, pp. 159-166,
doi:10.1109/JSTARS.2015.2426507.
[10] M. Kirscht, J. Mietzner, B. Bickert, A. Dallinger, J. Hippler, J. Meyer-Hilberg, R. Zahn, and J. Boukamp (2016), “An
Airborne Radar Sensor for Maritime and Ground Surveillance and Reconnaissance—Algorithmic Issues and
Exemplary Results”, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, v. 9, n. 3,
pp. 971-979, doi:10.1109/JSTARS.2015.2418173.
[11] F. André, M. Jonard, and S. Lambo (2015), “Non-Invasive Forest Litter Characterization Using Full-Wave Inversion of
Microwave Radar Data”, IEEE Transactions on Geosciences and Remote Sensing, v. 53, n. 2, pp. 828-840,
doi:10.1109/TGRS.2014.2328776
[12] F. Sagnard and F. Rejiba (2011) “Wide band Coplanar Waveguide-fed Bowtie Slot Antenna for a Large Range of
Ground Penetrating Radar Applications”, IET Microwaves, Antennas & Propagation, v. 5, n. 6, pp. 734–739 doi:
10.1049/iet-map.2010.0119
[13] X. Li, YicaiJi, W. Lu, and G. Fang (2013), “Analysis of GPR Antenna System Mounted on a Vehicle”, IEEE Antennas
and Wireless Propagation Letters, v. 12, pp. 575-578, doi:10.1109/LAWP.2013.2260818
[14] I. Giannakis, A. Giannopoulos and Craig Warren (2016), “A Realistic FDTD Numerical Modeling Framework of
Ground Penetrating Radar for Landmine Detection”, IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, v. 9, n. 1, pp. 37-51, doi:10.1109/JSTARS.2015.2468597
[15] J. De Pue, M. Van Meirvenne and W. M. Cornelis (2016), “Accounting for Surface Refraction in Velocity Semblance
Analysis With Air-Coupled GPR”, IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, v. 9, n. 1, pp. 60-73, doi:10.1109/JSTARS.2015.2439333
[16] Z. Zeng, J. Li, L. Huang, X. Feng, and F. Liu (2015), “Improving Target Detection Accuracy Based on
Multipolarization MIMO GPR”, IEEE Transactions on Geosciences and Remote Sensing, v. 53, n. 1, pp. 15-24,
doi:10.1109/TGRS.2014.2312937
[17] L. Fu, S. Liu, L. Liu and L. Lei (2014), “Development of an Airborne Ground Penetrating Radar System: Antenna
Design, Laboratory Experiment, and Numerical Simulation” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, v. 7, n. 3, pp. 761-766, doi:10.1109/JSTARS.2014.2303073
[18] A. Valls, F. García, M. Ramírez, and J. Benlloch (2016), “A Combined Use of GPR Data With Historical Archives for
Identifying Pavement Construction Periods of Valencian Silos”, IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, v. 9, n. 1, pp. 98-107, doi:10.1109/JSTARS.2015.2566192
[19] L. Qu, Y. Yin, Y. Sun, and L. Zhang (2015), “Diffraction Tomographic Ground-Penetrating Radar Multibistatic
Imaging Algorithm With Compressive Frequency Measurements”, IEEE Geosciences and Remote Sensing Letters, v.
12, n. 10, pp. 2011-2015, doi:10.1109/LGRS.2015.2441991
[20] P. Klesk, A. Godziuk, M. Kapruziak, and B. Olech (2015), “Fast Analysis of C-Scans From Ground Penetrating Radar
via 3-D Haar-Like Features With Application to Landmine Detection”, IEEE Transactions on Geosciences and Remote
Sensing, v. 53, n. 7, pp. 3996-4005, doi:10.1109/TGRS.2015.2388713
[21] F. Soldovieri, G. Gennarelli, and I. Catapano (2017), “Forward-Looking Radar Imaging: A Comparison of Two Data
Processing Strategies”, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, v. 10, n.
2, pp. 562-570, doi:10.1109/JSTARS.2015.2543840
[22] D. Paglieroni, D. Chambers, J. Mast, S. Bond, and R. Beer (2015), “Imaging Modes for Ground Penetrating Radar and
Their Relation to Detection Performance”, IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, v. 8, n. 3, pp. 1132-1144, doi:10.1109/JSTARS.2014.2357718
[23] A. De Coster, A. P. Tran, and S. Lambot (2016),”Fundamental Analyses on Layered Media Reconstruction Using GPR
and Full-Wave Inversion in Near-Field Conditions”, IEEE Transactions on Geoscience and Remote Sensing, v. 54, n.
9, pp. 5143-5158, doi: 10.1109/TGRS.2016.2556862
[24] E. R. Almeida, J. L. Porsani, I. Catapano, G. Gennarelli, and F.Soldovieri (2016), “Microwave Tomography-Enhanced
GPR in Forensic Surveys: The Case Study of a Tropical Environment” IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, v. 9, n. 1, pp. 115-124, doi:10.1109/JSTARS.2015.2466556
[25] K. Ren and R. J. Burkholder (2016), “A Uniform Diffraction Tomographic Imaging Algorithm for Near-Field
Microwave Scanning Through Stratified Media” IEEE Transactions on Antennas and Propagation, v. 64, n. 12, pp.
5198-5207, doi:10.1109/TAP.2016.2617358
[26] M. Biancheri-Astier, V. Ciarletti, A. Reineix, and A. Le Gall (2015), “Optimization of the Antennas of the EISS Radar
Designed to Perform Deep Martian Subsurface Sounding” IEEE Transactions on Geosciences and Remote Sensing, v.
53, n. 8, pp. 4627-4637, doi:10.1109/TGRS.2015.2404356
[27] B. Guan, A. Ihamouten, X. Derobert, D. Guilbert, S. Lambot, and G. Villain (2016), “Near-Field Full-Waveform
Inversion of Ground-Penetrating Radar Data to Monitor the Water Front in Limestone”, IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, v. x, n. x, pp. 1-9, doi:10.1109/JSTARS.2017.2743215
[28] L. Xinju et al. A Method of Quickly Detecting the Thickness of Surface Soil in Reclaimed Soil by Ground Penetrating
Radar. CN Pat. 201710131100, 31 May 2017.
[29] H. Youhan et al. A method for detecting irregular aggregate permittivity. CN Pat. 106932651A, 7 Jul. 2017.
[30] A. K. Chan, et al. Systems and methods for detecting soil characteristics. US Pat. 20170176589A1, 22 Jun. 2017.
[31] A. Gallagher, Methods for forming 3d image data and associated apparatuses. WO Pat. 2017089184A1, 1 Jun. 2017.
[32] X. Jun et al. Filling of prestressed concrete beam density recognition method. CN Pat. 106990018A, 28 Jul. 2017.
[33] C. Balanis, Antenna Theory: Analysis and Design,4th ed., John Wiley and Sons, 2015, ISBN: 9780471606390.
[34] J. F. Höfinghoff and L. Overmeyer (2013), “Resistive Loaded Antenna for Ground Penetrating Radar Inside a Bottom
Hole Assembly”, IEEE Transactions on Antennas and Propagation, v. 61, n. 12, pp. 6201-6205, doi:
10.1109/TAP.2013.2283604
[35] L. Quanhua, Y. Wang, A. Fathy(2012), "A compact integrated 100 GS/s sampling module for UWB see through wall
radar with fast refresh rate for dynamic real time imaging," In: IEEE Radio and Wireless Symposium (RWS), pp. 59-62,
doi: 10.1109/RWS.2012.6175295
[36] M. Salucci, L. Poli, N. Anselmi, and A. Massa (2017), “Multifrequency Particle Swarm Optimization for Enhanced
Multiresolution GPR Microwave Imaging”, IEEE Transactions on Geosciences and Remote Sensing, v. 53, n. 3, pp.
1305-1317, doi:10.1109/TGRS.2016.2622061
[37] F. Jonard, L. Weihermüller, M. Schwank, K. ZaibJadoon, H. Vereecken, and S. Lam (2015), “Estimation of Hydraulic
Properties of a Sandy Soil Using Ground-Based Active and Passive Microwave Remote Sensing”, IEEE Transactions
on Geosciences and Remote Sensing, v. 53, n. 6, pp. 3095-3109, doi:10.1109/TGRS.2014.2368831
[38] S. Saiti, S. K. Patra and A. Bhattacharya (2017), “A Modified Plane Wave Model for Fast and Accurate
Characterization of Layered Media”, IEEE Transactions on Microwave Theory and Techniques, v. 65, pp. 3492-3502,
doi: 10.1109/TMTT.2017.2668416
[39] D. Comite, A. Galli, S. E. Lauro, E. Mattei, and E. Pettinelli (2016), “Analysis of GPR Early-Time Signal Features for
the Evaluation of Soil Permittivity Through Numerical and Experimental Surveys” IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, v. 9, n. 1, pp. 178-187, doi: 10.1109/JSTARS.2015.2466174
[40] R. Deng and Ce Liu (1999), “FM-CW radar performance in a lossy layered medium”, Journal of Applied Geophysics,
Elsevier, v. 42, n. 1, pp. 23-33, doi: 10.1016/S0926-9851(99)00011-7
[41] F.-N. Kond and T. L. By (1995), “Performance of a GPR system which uses step frequency signals”, Journal of
Applied Geophysics, Elsevier, v. 33, n. 1-3, pp. 15-26, doi: 10.1016/0926-9851(95)90026-8
[42] P. T. W. Wong; W. W. L. Lai; M. Sato (2016), “Time-frequency spectral analysis of step frequency continuous wave
and impulse ground penetrating radar” In: IEEE 16th International Conference on Ground Penetrating Radar (GPR),
doi:10.1109/ICGPR.2016.7572694
[43] F. Fioranelli, Through-The-Wall Detection Using Ultra Wide Band Frequency Modulated Interrupted Continuous Wave
Signals, (Ph.D. dissertation), Durham University, 2013.
[44] S. Sharma, P. Jena, R. Kuloor (2013), “Ambiguity Function Analysis of SFCW and Comparison of Impulse GPR and
SFCW GPR” In: 9th International Radar Symposium India - 2013.
[45] S. Busch, J. van der Kruk, and H. Vereecken (2014), “Improved Characterization of Fine-Texture Soils Using OnGround GPR Full-Waveform Inversion”, IEEE Transactions on Geosciences and Remote Sensing, v. 52, n. 7, pp.
3947-3957, doi:10.1109/TGRS.2013.2278297
[46] N. Diamanti and A. Peter Annan (2017), “Air-Launched and Ground-Coupled GPR Data”, In: 11th European
Conference on Antennas and Propagation (EUCAP), Paris, doi: 10.23919/EUCAP.2017.7928409
[47] E. Vijver, J. DePue, W. Cornelis, and M. Meirvenne (2015), “Comparison of air-launched and ground-coupled
configurations of SFCW GPR in time, frequency and wavelet domain”, In: European Geosciences Union (EGU) -
General Assembly 2015, Vienna, Austria, v. 17, EGU2015-10038
[48] H. G. Schantz, "Dispersion and UWB Antennas," In: IEEE International Conference on Ultrawideband Systems and
Technologies 2004, Kyoto, Japan, doi: 10.1109/UWBST.2004.1320956.
[49] P. Miller, (2014) "The measurement of antenna group delay," In: The 8th European Conference on Antennas and
Propagation (EuCAP 2014), Hague, pp. 1488-1492. doi: 10.1109/EuCAP.2014.6902064.
[50] Do-Hoon Kwon (2006), “Effect of antenna gain and group delay variations on pulse-preserving capabilities of
ultrawideband antennas," IEEE Transactions on Antennas and Propagation, v. 54, n. 8, pp. 2208-2215, doi:
10.1109/TAP.2006.879189.
[51] J. Ali, N. Abdullah, M. T. Ismail, E. Mohd, S. M. Shah, (2017) “Ultra-Wideband Antenna Design for GPR
Applications: A Review”, International Journal of Advanced Computer Science and Applications (IJACSA), v. 8, n. 7,
pp. 392-400, doi:10.14569/IJACSA.2017.080753
[52] M. Pieraccini, N. Rojhani, L. Miccinesi, (2017) "Comparison between Horn and Bow-tie Antennas for Ground
Penetrating Radar", In: IEEE 9th International Workshop on Advanced Ground Penetrating Radar (IWAGPR),
Edinburgh, doi: 10.1109/IWAGPR.2017.7996051
[53] L. Pajewski, F. Tosti, W. Kusayanagi, (2015) "Antennas for GPR Systems", In: Benedetto A., Pajewski L. (eds) Civil
Engineering Applications of Ground Penetrating Radar. Springer Transactions in Civil and Environmental Engineering.
Springer, pp. 41-67, ISBN: 9783319048123.
[54] V. H. Rumsey (1958), "Frequency Independent Antennas," In: IRE International Convention Record, Illinois, DOI:
10.1109/IRECON.1957.1150565
[55] D. J. Daniels (2005), Ground Penetrating Radar, John Wiley & Sons, DOI: 10.1002/0471654507.eme152
[56] IEEE Standard for Definitions of Terms for Antennas, 145-2013, 2014, doi:10.1109/IEEESTD.2014.6758443
[57] USA Electronic Code of Federal Regulations, Title 47, Chapter I, Subchapter A, Part 15, Subpart F, §15.509 Technical
requirements for ground penetrating radars and wall imaging systems, Apr. 2003.
[58] USA Electronic Code of Federal Regulations, Title 47, Chapter I, Subchapter A, Part 15, Subpart F, §15.521 Technical
requirements applicable to all UWB devices, Feb. 2005.
[59] P. K. Golding, S. Naylor, S. Schulz, J. Maier, H.Lall, U.Velde (2017). "Framework for minimising the impact of
regional shocks on global food security using multi-objective ant colony optimisation", Environmental Modelling &
Software. v. 95,pp. 303-319. doi:10.1016/j.envsoft.2017.06.004.
[60] N. Ida, Engineering Electromagnetics, 2nd ed., Springer, 2015, ISBN: 9783319078052.
[61] A.Taflove and S.Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed.,
Artech House Publishers, 2016, ISBN: 9781580538329.
[62] C. Warren, A. Giannopoulos and I. Giannakis (2016). “gprMax: Open source software to simulate electromagnetic
wave propagation for Ground Penetrating Radar”, Computer Physics Communications, v. 209, pp. 163-170,
doi:10.1016/j.cpc.2016.08.020.
[63] MIT Electromagnetic Equation Propagation (MEEP), “MEEP free finite-difference time-domain (FDTD) simulation
software package to model electromagnetic systems”, 2017. [online]. Available: https://meep.readthedocs.io/en/latest/.
[Accessed: 16-april-2018].
[64] ANSYS, Inc. “ANSYS HFSS: High Frequency Electromagnetic Field Simulation”, 2017. [online]. Available:
http://www.ansys.com/products/electronics/ansys-hfss. [Accessed: 16-april-2018].
[65] Altair Hyperworks, Inc. “FEKO 3D computational electromagnetic software”, 2017. [online]. Available:
http://www.altairhyperworks.com/product/FEKO. [Accessed: 16-april-2018].
[66] DassaultSystemes, Inc. “Computer Simulation Technology – CST Microwave Studio”, 2017. [online]. Available:
https://www.cst.com/products/cstmws/solvers. [Accessed: 16-april-2018].
[67] GSSI, Inc. “RADAN GPR Data Processing Software”, 2017. [online]. Available:
http://www.geophysical.com/software.htm. [Accessed: 16-april-2018].
[68] C. M. Coevorden, M. F. Pantoja, S. G. Garcia, A. R. Bretones, R. Gomez-Martin, K. Palmer (2013), “MultiobjectiveOptimized Design of a New UWB Antenna for UWB Applications", Hindawi Publishing Corporation, International
Journal of Antennas and Propagation, vol. 2013, Article ID 476878, doi:10.1155/2013.476878 .
[69] M. Li, R.Birken, N. Sun, and M. Wang (2016), “Compact Slot Antenna With Low Dispersion for Ground Penetrating
Radar Application”, IEEE Antennas and Wireless Propagation Letters, v. 15, pp. 638-641,
doi:10.1109/LAWP.2015.2465854.
[70] A. Ahmed, Y. Zhang, D. Burns, D. Huston and T. Xia (2016), “Design of UWB Antenna for Air-Coupled Impulse
Ground-Penetrating Radar,” IEEE Geoscience and Remote Sensing Letters, vol. 13, pp. 92-96.
doi:10.1109/LGRS.2015.2498404.
[71] R. Nayak, S. Maiti and S. K. Patra, (2016) “Design and simulation of compact UWB Bow-tie antenna with reduced
end-fire reflections for GPR applications,” Int. Conference on Wireless Communication, Signal Processing and
Networking (WiSPNET), Chennai, pp. 1786-1790. doi:10.1109/WiSPNET.2016.7566447.
[72] M. Salucci, G. Oliveri, P. Rocca, A. Massa (2017), “A system-by-design approach for efficient multiband patch
antennas design” In: Applied Computational Electromagnetics Society Symposium (ACES),
doi:10.23919/ROPACES.2017.7916339.
[73] S. Liu, Q. Wang, R.Gao (2014), A topology optimization method for design of small GPR antennas, Springer-Verlag,
Struct Multidisc Optim, doi: 10.1007/s00158-014-1106-y
[74] N. Liu , P. Yang, W. Wang (2013), Design of a Miniaturized Ultra-wideband Compound Spiral Antenna, In: IEEE
Microwave Technology & Computational Electromagnetics (ICMTCE), Qingdao, doi:
10.1109/ICMTCE.2013.6812453.
[75] B. Hutchinson, Design of an Ultra-Wideband Spiral Antenna for Ground-Penetrating Microwave Impulse Radar
Application, (Ph.D. dissertation), California Polytechnic State University, 2015.
[76] Z. Wang and X. Xie (2012), "Design and Optimization of the Antenna Applied for Detecting the Voids in Tunnel
Lining by GPR, In: IEEE 16th International Conference on Ground Penetrating Radar, Shanghai.
doi:10.1109/ICGPR.2012.6254847.
[77] A. A. Jamali and R.Marklein (2011), "Design and optimization of ultra-wideband TEM horn antennas for GPR
applications", In: 30th URSI General Assembly and Scientific Symposium, Istanbul, DOI:
10.1109/URSIGASS.2011.6050360.
[78] H. S. Faraji, R. Moimi, S. H. H. Sadeghi and H. A. Talebi (2009), "Design of a New Wire Bow-tie Antenna for
Ultrawide-Band GPR Applications Using Genetic Algorithm," In: 13th International Symposium on Antenna
Technology and Applied Electromagnetic and the Canadian Radio Sciences Meeting, Toronto, DOI:
10.1109/ANTEMURSI.2009.4805110.
[79] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, 1st ed., John Willey & Sons LTD, 2010, ISBN:
9780471873396.
[80] S. Bechikh, R. Datta, A. Gupta, Recent Advances in Evolutionary Multi-objective Optimization, 1st ed., Springer
International Publishing, 2017. ISBN: 9783319429779.
[81] M. P. Bendsøe, O. Sigmund, Topology Optimization: Theory Methods and Applications, Springer, 2004, ISBN: 978-3-
662-05086-6
[82] S. Osher, R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer, 2006, ISBN: 978-0-387-22746-7.
[83] J. Wang, X. Yang, X. Ding and B. Wang (2017), "Antenna Radiation Characteristics Optimization by a Hybrid
Topological Method," IEEE Transactions on Antennas and Propagation, v. 65, n. 6, pp. 2843-2854, doi:
10.1109/TAP.2017.2688918.
[84] D. A. G. Vieira, A. C. Lisboa and R. R. Saldanha (2010), "An Enhanced Ellipsoid Method for Electromagnetic Devices
Optimization and Design," IEEE Transactions on Magnetics, v. 46, n. 8, pp. 2843-2851, doi:
10.1109/TMAG.2010.2042582

Downloads

Published

2018-09-30

How to Cite

X. L. Travassos, S. L. Avila, R. L. da S. Adriano, & N. Ida. (2018). A REVIEW OF GROUND PENETRATING RADAR ANTENNA DESIGN AND OPTIMIZATION. Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 17(3), 385-402. https://doi.org/10.1590/2179-10742018v17i31321

Issue

Section

Regular Papers