THE BEHAVIOR OF CPW-FED SIERPINSKI CURVE FRACTAL ANTENNA

Authors

  • Abdelati REHA
  • Abdelkebir EL AMRI
  • Marouane BOUCHOUIRBAT

DOI:

https://doi.org/10.1590/2179-10742018v17i31244

Keywords:

Antenna design, Fractal Antennas, SIERPINSKI Curve

Abstract

In this paper, the behavior of Coplanar Waveguide (CPW) fed SIERPINSKI curve fractal antenna is studied. The results show that there is a relationship between the iteration number and the resonance frequencies. With increase in the number of iteration the resonance frequency decreases with a constant ratio. The use of fractal structures to design antennas makes them more miniaturized. The simulated results obtained from CADFEKO a Method of Moments (MoM) model based Solver and measurement using Vector Network Analyzer Anritsu MS2026C are in good agreement

References

[1] M. T. Yassen, M. R. Hussan, H. A. Hammas, and A. J. Salim, “Design of Compact Dual-band Fractal Monopole
Antenna with Virtually Extended Ground Plane,” Adv. Electromagn., vol. 2018.
[2] Hong-Twu Chen, Kin-Lu Wong, and Tzung-Wern Chiou, “PIFA with a meandered and folded patch for the dual-band
mobile phone application,” IEEE Trans. Antennas Propag., vol. 51, no. 9, pp. 2468–2471, Sep. 2003.
[3] A. Reha, A. El Amri, O. Benhmammouch, and A. Oulad Said, “Fractal Antennas : A Novel Miniaturization Technique
for wireless Networks,” Trans. Netw. Commun., vol. 2, no. 5, Oct. 2014.
[4] S. Sun and L. Zhu, “Miniaturised patch hybrid couplers using asymmetrically loaded cross slots,” IET Microw.
Antennas Propag., vol. 4, no. 9, p. 1427, 2010.
[5] P.-L. Chi, R. Waterhouse, and T. Itoh, “Antenna Miniaturization Using Slow Wave Enhancement Factor from Loaded
Transmission Line Models,” IEEE Trans. Antennas Propag., vol. 59, no. 1, pp. 48–57, Jan. 2011.
[6] A. K. Skrivervik, J.-F. Zurcher, O. Staub, and J. R. Mosig, “PCS antenna design: the challenge of miniaturization,”
IEEE Antennas Propag. Mag., vol. 43, no. 4, pp. 12–27, Aug. 2001.
[7] M. Tarbouch, “Trial of H-Tree fractal slots in the ground plane of a micropstrip patch antenna,” Int. J. Microw. Opt.
Technol., vol. 13, no. 1, pp. 51–60, Jan. 2018.
[8] C. G. Kakoyiannis and P. Constantinou, “A compact microstrip antenna with tapered peripheral slits for CubeSat RF
Payloads at 436MHz: Miniaturization techniques, design & numerical results,” 2008, pp. 255–259.
[9] J. Anguera, L. Boada, C. Puente, C. Borja, and J. Soler, “Stacked H-Shaped Microstrip Patch Antenna,” IEEE Trans.
Antennas Propag., vol. 52, no. 4, pp. 983–993, Apr. 2004.
[10] S. A. Bokhari, J.-F. Zurcher, J. R. Mosig, and F. E. Gardiol, “A small microstrip patch antenna with a convenient
tuning option,” IEEE Trans. Antennas Propag., vol. 44, no. 11, pp. 1521–1528, Nov. 1996.
[11] S. Chatterjee, U. Chakraborty, I. Sarkar, P. P. Sarkar, and S. K. Chowdhury, “A compact microstrip antenna for mobile
communication,” 2010, pp. 1–3.
[12] Wen-Shyang Chen, Chun-Kun Wu, and Kin-Lu Wong, “Square-ring microstrip antenna with a cross strip for compact
circular polarization operation,” IEEE Trans. Antennas Propag., vol. 47, no. 10, pp. 1566–1568, Oct. 1999.
[13] M. Tarbouch, A. El Amri, H. Terchoune, and O. Barrou, “A compact microstrip patch antenna based on fractal
geometry on the ground plane,” 2018, pp. 1–8.
[14] M. Tarbouch, A. El Amri, and H. Terchoune, “Design, Realization and Measurements of Compact CPW-Fed
Microstrip Octagonal Patch Antenna with H Slot for WLAN and WIMAX Applications,” Int. J. Microw. Opt. Technol.,
vol. 12, no. 5, pp. 389–398, Sep. 2017.
[15] D.-C. Chang, B.-H. Zeng, and J.-C. Liu, “CPW-Fed Circular Fractal Slot Antenna Design for Dual-Band
Applications,” IEEE Trans. Antennas Propag., vol. 56, no. 12, pp. 3630–3636, Dec. 2008.
[16] K. J. Vinoy, J. K. Abraham, and V. K. Varadan, “On the relationship between fractal dimension and the performance of
multi-resonant dipole antennas using koch curves,” IEEE Trans. Antennas Propag., vol. 51, no. 9, pp. 2296–2303, Sep.
2003.
[17] N. Sharma, G. P. Singh, and V. Sharma, “Miniaturization of fractal antenna using novel Giuseppe peano geometry for
wireless applications,” 2016, pp. 1–4.
[18] H. Sagan, Space-filling curves. New York (NY): Springer, 1994.
[19] C. A. Balanis, Antenna theory: analysis and design, 3rd ed. Hoboken, NJ: John Wiley, 2005.

Downloads

Published

2018-09-30

How to Cite

Abdelati REHA, Abdelkebir EL AMRI, & Marouane BOUCHOUIRBAT. (2018). THE BEHAVIOR OF CPW-FED SIERPINSKI CURVE FRACTAL ANTENNA. Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 17(3), 366-372. https://doi.org/10.1590/2179-10742018v17i31244

Issue

Section

Regular Papers