EFFECTS OF BIREFRINGENCE ON THE ELECTROMAGNETIC GUIDANCE OF STRUCTURES PRODUCED BY FEMTOSECOND LASER

Authors

  • Fernanda Mantuan Dala Rosa de Oliveira
  • Ismael Chiamenti
  • José Luís Fabris
  • Marcia Muller
  • Hypolito José Kalinowski

DOI:

https://doi.org/10.1590/2179-10742018v17i21188

Keywords:

Lithium Fluoride, Lithium Niobate, State of Polarization, Waveguide Femtosecond Writing

Abstract

Analysis of the state of polarization of light guided by structures recorded in crystals of lithium niobate and lithium fluoride indicates that the recording method is determinant in the formation of birefringent structures. Each structure was written with a single and continuous translation of the crystal transversally to the laser beam. The characteristics of the birefringence of the structures recorded are observed in both crystals, even for lithium fluoride lacking intrinsic birefringence. In the case of the lithium niobate structure there is different areas with different degree of birefringence. The structure generated with femtosecond laser is directly linked to the recording method and the crystalline lattice can provide advantages for application in photonic devices.Lithium NiobateLithium Niobate

References

[1] K. M. Davis, K. Miura, N. Sugimoto, K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Optics Letters,
vol. 21, pp. 1729-1731, 1996.
[2] S. Nolte, M. Will, J. Burghoff, A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional
integrated optics,” Appl. Phys. A: Materials Science & Processing, vol. 77, pp. 109-111, 2003.
[3] K. Miura, J. Qiu, H. Inouye, T. Mitsuyu and K., Hirao, “Photowritten optical waveguides in various glasses with
ultrashort pulse laser,” Appl. Phys. Lett., vol. 71, pp. 3329-3331, 1997.
[4] M. Ams, G.D. Marshall, P. Dekker, J.A. Piper and M.J. Withford, “Ultrafast laser written active devices,” Laser
Photonics Rev., vol. 3, no. 6, pp. 535-544, 2009.
[5] J. Burghoff, S. Nolte, A. Tuennermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3
,” Appl. Phys.
A: Materials Science and Processing, vol. 89, pp. 127-132, 2007.
[6] J. Burghoff, H, Hartung, S. Nolte, A. Tuennermann, “Structural properties of femtosecond laser-induced modifications
in LiNbO3
,” Appl. Phys. A: Materials Science and Processing, vol. 86, pp. 165-170, 2006.
[7] P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides
prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett., vol. 85, no. 20, pp. 4603-4605, 2004.
[8] R. S. Weis, T. K, Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A:
Materials Science & Processing, vol. 37, pp. 191-203, 1985.
[9] I. Baumann, S. Bosso, R. Brinkmann, R. Corsini, M. Dinand, A. Greiner, K. Schäfer, J. Söchtig, W. Sohler, H. Suche,
and R. Wessel, “Er-Doped integrated optical devices in LiNbO3
,” IEEE J. Sel. Top. Quant. Electron., vol. 2, no. 2, pp.
355–366, 1996.
[10] W. Sohler, B. K. Das, D. Dey, S. Reza, and H. Suche, “Erbium-Doped lithium niobate waveguide lasers,” IEICE Trans. Electron.,
no. 5, pp. 990–997, 2005.
[11] R. K Choubey, P. Sen, P. K. Sen, R. Bhatt, S. Kar, V. Shukla, K. S. Bartwal, “Optical properties of MgO doped LiNbO3
single crystals,” Opt. Materials, vol. 28, pp. 467-472, 2006.
[12] L. Gui, B. Xu, and T. C. Chong, “Microstructure in lithium niobate by use of focused femtosecond laser pulses,” IEEE
Photonics Technol. Lett., vol. 16, no. 5, pp. 1337–1339, 2004.
[13] H. Chen, T. Lv, A. Zheng, and Y. Han, “Directly writing embedded waveguides in lithium niobate by a femtosecond
laser,” Opt. - Int. J. Light Electron Opt., vol. 124, no. 3, pp. 195–197, 2013.
[14] R. R. Thomson, S. Campbell, I. J. Blewett, a. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium
niobate (LiNbO[sub 3]) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett., vol. 88, pp.
111109-1 - 111109-3, 2006.
[15] S. Bhardwaj, K. Mittholiya, A. Bhatnagar, R. Bernard, J.A. Dharmadhikari, D. Mathur and A.K. Dharmadhikari,
“Inscription of type I and depressed cladding waveguides in lithium niobate using a femtosecond laser,” Appl. Optics,
vol. 56, no. 20, pp. 5692-5697, 2017.
[16] J. Lv, X. Hao and F. Chen, “Green up-conversion and near-infrared luminescence of femtosecond-laser-written
waveguides in Er3+, MgO co-doped nearly stoichiometric LiNbO3 crystal,” Optics Express, vol. 24, no. 22, pp. 25482-
25490, 2016.
[17] J. Burghoff, C. Grebing, S. Nolte and A. Tuennermann, “Efficient frequency doubling in femtosecond laser-written
waveguides in lithium niobate,” Appl. Phys. A: Materials Science and Processing, vol. 89, pp. 081-108, 2006.
[18] J. Qi, P. Wang, Y. Liao, W. Chu, Z. Liu, Z. Wang, L. Qiao, and Y. Cheng, “Fabrication of polarization-independent
single mode waveguides in lithium niobate crystal with femtosecond laser pulses,” Optical Materials Express, vol.6,
no.8, pp. 2554-2559, 2016.
[19] G. Baldacchini, “Colored LiF: an optical material for all seasons,” Journal of Luminescence, vol. 100, pp. 333–343,
2002.
[20] J. Nahum and D. A. Wiegand “Optical properties of some F-aggregate centers in LiF,” Phys. Rev. pp. 154 817, 1967.
[21] H. J. Kalinowski, R. M. Montereali, M. A. Vincenti and R. N. Nogueira, “Visible photoluminescence in coloured
lithium fluoride under ultra-violet continuous wave excitation,” J. Phys. C:Conf. Series, 249, 2010, pp. 012002.
[22] R. A. Nunes, H. J. Kalinowski, S. Paciornik, A. M. Souza, and L. C. Scavarda do Carmo, “Electron-beam production of
colour centres on alkali halide crystals and films,” Nucl. Instrum. Methods Phys. Res. B, vol. 32, pp. 222, 1988.
[23] R. M. Montereali, A. Mancini, G. C. Righini, and S. Pelli, “Active stripe waveguides produced by eléctron beam
lithography in LiF single crystals,” Opt. Commun., vol 153, pp. 223, 1998.
[24] T. Kurobori, T. Sakai, S. A. Aoshima, “A narrow band, green-red colour centre laser in LiF fabricated by femtosecond
laser pulses,” Phys. Stat. Sol., vol. 204a, no. 3, pp. 699–705, 2007.
[25] I. Chiamenti, F. Bonfigli, R. M. Montereali and H. J. Kalinowski, “Dimensions and refractive index estimates of deeply
buried optical waveguides in lithium fluoride,” J. Microw. Optoelectr. Eletromag. Appl., vol.13, no. 1, pp. 47-54, 2014.
[26] I. Chiamenti, F. Bonfigli, A. S. L. Gomes, R. M. Montereali, L. N. Costa and H.J. Kalinowski, “Broadband optical
active waveguides written by femtosecond laser pulses in lithium fluoride,” Chin. Phys. Lett., vol. 31, no.1, pp. 014201,
2014.
[27] ] I. Chiamenti, F. Bonfigli, A. S. L. Gomes, F. Michelotti, R. M. Montereali and H.J. Kalinowski, J. Appl. Phys vol.
115, pp. 023108, 2014.
[28] T. Kurobori, K. Inabe, and N. Takeuchi, “Room temperature visible distributed-feedback colour centre laser,” J. Phys.
D: Appl. Phys., vol. 16, no. L121, 1983.
[29] K. Kawamura, M. Horano, T. Kurobori, D. Takamizu, T. Kamiya, and H. Hosono, “Femtosecond-laser-encoded
distributed-feedback color center laser in lithium fluoride single crystals,” Appl. Phys. Lett., vol. 84, no. 3, pp. 311,
2004.
[30] M. A. Vincenti, S. Almaviva, R. M. Montereali, H. J. Kalinowski, and R. N. Nogueira, “Permanent luminescent
micropatterns photoinduced by low-power ultraviolet irradiation in lithium fluoride,” Appl. Phys. Lett., Vol. 89, pp.
241125, 2006.
[31] R.M. Montereali, F. Bonfigli, E. Nichelatti, M.A. Vincenti, "Versatile lithium fluorde thin-film solid-state detectors for
nanoscale radiation imaging," Nuovo Cimento C, vol 36, no. 2, pp. 35, 2013.
[32] V. V. Ter-mikirtychev, “Stable room-temperature LiF:F2+ tunable color-center laser for the 830–1060–nm spectral
range pumped by second-harmonic radiation from a neodymium laser,” Applied Optics, vol. 34, no. 27, pp. 6114–6117,
1995.
[33] Y. Obayashi, et al. “Red and green distributed-feedback LiF color center lasers fabricated by interference of
femtosecond laser pulses,” The Review of Laser Engineering, vol. 36, pp. 1226– 1229, 2008.
[34] M. Sakakura, Y. Shimotsuma, N. Fukuda, K. Miura, “Transient strain distributions during femtosecond laser-induced
deformation inside LiF and MgO single crystals,” Journal of Applied Physics, vol. 118, 023106, 2015.

Downloads

Published

2018-09-30

How to Cite

Fernanda Mantuan Dala Rosa de Oliveira, Ismael Chiamenti, José Luís Fabris, Marcia Muller, & Hypolito José Kalinowski. (2018). EFFECTS OF BIREFRINGENCE ON THE ELECTROMAGNETIC GUIDANCE OF STRUCTURES PRODUCED BY FEMTOSECOND LASER. Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 17(2), 217–228. https://doi.org/10.1590/2179-10742018v17i21188

Issue

Section

Regular Papers

Most read articles by the same author(s)

1 2 > >>