• Li Liu
  • Chengguang Zhang
  • Yu Liu
  • Yujin Hua




Metamaterial-based antenna, negative permittivity, negative permeability, , gain enhancement


This paper presents an antenna of loaded with metamaterial to enhance the gain and directivity of antenna to improve the performance of the ground-penetrating radar system (GPR). By adjusting the parameters of the antenna to change the antenna equivalent capacitance, inductance, and designed the operating frequency of 0.5GHz-1.2GHz ultra-wideband antenna. On the basis of this operating frequency, we also designed the corresponding negative permittivity and permeability materials, and realized the design and simulation of patch antenna and material working in the 1GHz frequency band. The high gain and directivity of the antenna loaded with single negative material are verified by simulation. Compared to the original antenna increased the maximum gain of 7dB, the direction has also been greatly improved.


[1] Xiong, H., Hong, J.S., Jin, D.L. and Z. M. Zhang, A Novel Structure for Broadband Left-handed Metamaterial, Chin.
Phys. B, 21, pp. 4101-4105, 2012.
[2] Kafesaki, M., Tsiapa, I., Katsarakis, N. & Koschny, Th., Left-handed Metamaterials: the Fishnet Structure and Its
Variations, Physical Review B, 75, pp. 5114-5122, 2007.
[3] Sun, L. & Yu, K.W., Strategy for Designing Broadband Epsilon-near-zero Metamaterial with Loss Compensation by
Gain Media, Applied Physics Letters, 100, pp. 1903-1906, 2012.
[4] Soemphol, C., Sonsilphong, A. & Wongkasem, N., Metamaterials with Near-zero Refractive Index Produced Using
Fishnet Structures, Journal of Optics, 16, pp. 5104-5109, 2014.
[5] Sun, L., Gao, J. & Yang, X.D., Broadband Epsilon-near-zero Metamaterials with Step-like Metal-dielectric Multilayer
Structures, Physical Review B, 87, pp. 5134-5139, 2013.
[6] Nilavalan, R., Hilton, G.S. & Benjamin, R., Wideband Printed Bowtie Antenna Element Development for Post
Reception Synthetic Focusing Surface Penetrating Radar, Electronics Letters, 35, pp. 1771-1772, 1999.
[7] Soh, P.J., Mercuri, M., Pandey, G. & Vandenbosch, G.A.E., Dual-Band Planar Bowtie Monopole for a Fall-Detection
Radar and Telemetry System, IEEE Antennas and Wireless Propagation Letters, 11, pp. 1698-1701, 2012.
[8] Byers, K.J., Harish, A.R., Seguin, S.A. & Leuschen, C.J., A Modified Wideband Dipole Antenna for an Airborne VHF
Ice-Penetrating Radar, IEEE Antennas and Wireless Propagation Letters, 61, pp. 1435-1443, 2012.
[9] Mahmoud, A.M., Hoorfar, A. & Thajudeen, C., Enhanced Design of Bowtie Antennas over High-Impedance Surfaces:
An Evolutionary Approach, IEEE Antenna and Propagation Society Meeting, Jul. pp. 270-271, 2013.
[10] Ranasinghe, H.M.P.B., Senanayake, S.M.P., Senarathne, U.I.P., & Gunawardena, A.U.A.W., Design of a Low Cost
Cavity Backed Wideband Bow-tie Antenna for Ground Penetrating Radar Systems, IEEE 8th International Conference
on Industrial and Information Systems, Dce. pp. 370-372, 2013.
[11] Pentry, J.B., Negative Refraction Makes a Perfect Lens, Physical Review Letters, 85, pp. 3966-3969, 2000.
[12] Ozlem, O. & Mustafa, K., Utilization of Anisotropic Metamaterial Layers in Waveguide Miniaturization and
Transitions, IEEE Microwave and Wireless Components Letters, 17, pp. 754-756, 2007.
[13] Dong, Y.D. & Itoh, T., Composite Right/left-handed Substrate Integrated Waveguide Leaky-wave Structures, IEEE
Transactions on Antennas and Propagation, 59, pp. 767-775, 2011.
[14] Paulotto, S., Baccarelli, P., Frezza, F. & Jackson, D.R., Full-wave modal dispersion analysis and broadside optimization
for a class of microstrip CRLH leaky-wave antennas, Microwave Theory and Techniques, IEEE Transactions on, 56,pp.
2826-2837, 2008.
[15] Stuart, H.R. & Pidwerbetsky, A., Electrically small antenna elements using negative permittivity resonators. Antennas
and Propagation, IEEE Transactions on, 54, pp. 1644-1653, 2006.
[16] Stuart, H. R. & Yaghjian, A.D., Approaching the Lower Bounds on Q for Electrically Small Electric-dipole Antennas
Using High Permeability Shells, Antennas and Propagation, IEEE Transactions on, 58, pp. 3865-3872, 2010.
[17] Mumcu, G., Sertel, K. & Volakis, J.L., Miniature Antenna Using Printed Coupled Lines Emulating Degenerate Band
Edge Crystals, Antennas and Propagation, IEEE Transactions on, 57, pp. 1618-1624, 2009.
[18] Ziolkowski, R.W., Jin, P., Nielsen, J. & Tanielian, M., Experimental Verification of Z Antennas at UHF Frequencies,
Antennas and Wireless Propagation Letters, 8, pp. 1329-1333, 2009.
[19] Jin, P. & Ziolkowski, R.W., Low-Q, Electrically small, Efficient Near-field Resonant Parasitic Antennas, Antennas and
Propagation, IEEE Transactions on, 57, pp. 2548-2563, 2009.
[20] Dong, Y., Toyao, H. & Itoh, T., Design and characterization of miniaturized patch antennas loaded with complementary
split-ring resonators, Antennas and Propagation, IEEE Transactions on, 60, pp. 772-785, 2012.
[21] Kim, I. k., & Varadan, V. V., Electrically Small, Millimeter Wave Dual Band Meta-resonator Antennas, Antennas and
Propagation, IEEE Transactions on, 58, pp. 3458-3463, 2010.
[22] Dong, Y., Toyao, H. & Itoh, T., Miniaturized zeroth order resonance antenna over a reactive impedance surface,
International Workshop on Antenna Technology, May. pp. 58-61, 2011.
[23] Zhu, S. & Langley, R., Dual-band wearable textile antenna on an EBG substrate. Antennas and Propagation, IEEE
Transactions on, 57, pp. 926-935, 2009.
[24] Rashmiranjan N., Subrata M., & Sarat K. P., Design and simulation of compact UWB Bow-tie antenna with reduced
end-fire reflections for GPR applications, Wireless Communications Signal Processing and Networking (WiSPNET)
International Conference on, pp. 1786-1790, 2016.




How to Cite

Li Liu, Chengguang Zhang, Yu Liu, & Yujin Hua. (2018). A HIGH GAIN AND DIRECTIVITY BOW TIE ANTENNA BASED ON SINGLE-NEGATIVE METAMATERIAL. Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 17(2), 246–259. https://doi.org/10.1590/2179-10742018v17i21116



Regular Papers