• K. Benatia
  • A. Telia




Electrical and optical properties, Finite difference modeling, Organic light emitting diode


In this paper, an in-depth study of the electrical and optical characteristics of Polymer Light Emitting Diodes ITO/PEDOT: PSS/DP-PPV derivatives/Al(Ca) is presented. Three polymer materials are considered; poly(2,3-diphenyl-5-(4-heptyloxy-4'-oxytrimethylenediphenyl)-phenylenevinylene) (P1), poly(2,3-diphenyl-5-[4-(4-pentylcyclohexyl)phenoxy]-propyl-p-phenylene vinylene) (P2) and poly(2,3-diphenyl-5-(2-(1, 4, 5-triphenyl-1H-2-imidazoloyl)-1-oxytrimethylene phenyl) phenylene vinylene) (P3). The J-V characteristics are investigated using a device model which includes the injection, transport, and recombination mechanisms. The electron and hole mobility of each material are fitted to experimental data. The charge balance factor CBF, the external quantum efficiency EQE, the Langevin recombination rates and the singlet exciton densities profiles are studied. The results are found to be in a good agreement with experimental data, indicating that these PLEDs electrons mobility affects greatly the J-V characteristics compared with holes mobility, and that is because the electrons band offset smaller than that of holes. The best performance is obtained with P1 device with a CBF value of almost unity and an EQE still low (4.7 %) but similar to other PPVs and MEH-PPVs based devices.


[1] C. Zhang, P. Chen and W. Hu, “ Organic field-effect transistor-based gas sensors “, Chem. Soc.
Rev., 44, pp. 2087-2107, 2015.
[2] Junmo Kang, Deep Jariwala, Christopher R Ryder, Spencer A Wells, Yongsuk Choi, Euyheon
Hwang, Jeong Ho Cho, Tobin J. Marks, and Mark C Hersam, “Probing out-of-plane charge
transport in black phosphorus with graphene-contacted vertical field-effect transistors”, ACS
Nano, 16 (4), pp 2580–2585, 2016.
[3] Xiu-Li Yang , Xiahui Chen , Gui-Hua Hou , Rong-Feng Guan , Rong Shao , and Ming-Hua
Xie, “A multiresponsive metal–organic framework: direct chemiluminescence,
photoluminescence, and dual tunable sensing applications”, Adv. Funct. Mater. 26, pp. 393–398,
[4] Dian Zhao, Yuanjing Cui, Yu Yang and Guodong Qian, “Sensing‐functional luminescent metal‐
organic frameworks”, CrystEngComm, ,18, pp. 3746-3759, 2016.
[5] Timothy F. O’Connor, Aliaksandr V. Zaretski, Suchol Savagatrup, Adam D. Printz, Cameron D.
Wilkes, Mare Ivana Diaz, Eric J. Sawyer, Darren J. Lipomi, “Wearable organic solar cells with high cyclic bending stability: Materials selection criteria”, Solar Energy Materials & Solar Cells,
144, pp. 438–444, 2016.
[6] Maxime Guérette , Ahmed Najari , Julie Maltais , Jean-Rémi Pouliot , Stéphane Dufresne ,
Martin Simoneau , Simon Besner , Patrick Charest , and Mario Leclerc, “New processable
phenanthridinone-based polymers for organic solar cell applications”, Adv. Energy Mater., 6,
pp.1-6 (1502094). 2016
[7] Ideki Shirakawa, Edwin J. Louis, Alan G. Macdiarmid, Chwan K. Chiang, and Alan J. Heeger,
“Synthesis of electrically conducting organic polymers : halogen derivatives of polyacetylene,
(CH)x”, J. Chem. Soc., Chem. Commun., pp. 578-580, 1977.
[8] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes”, Appl. Phys. Lett. vol.51,
no. 12, pp. 913-915, 21 September 1987.
[9] I.D. Parker, “Carrier tunneling and device characteristics in polymer light-emitting diodes”, J.
Appl. Phys. Vol.75, no. 3, pp. 1656-1666, 1 February 1994.
[10] P. S. Davids, Sh. M. Kogan, I. D. Parker, and D. L. Smith, “Charge injection in organic lightemitting diodes: Tunneling into low mobility materials”, Appl. Phys. Lett., vol. 69, no. 15, pp.
2270-2272, 7 October 1996.
[11] P. S. Davids, I. H. Campbell, and D. L. Smith, “Device model for single carrier organic diodes”
J. Appl. Phys., vol.82, no. 12, pp. 6319-6325, 15 December 1997.
[12] B. K. Crone, P. S. Davids, I. H. Campbell, and D. L. Smith, “Device model investigation of
single layer organic light emitting diodes” , J. Appl. Phys., vol.84, no. 2, pp. 833-82, 15 July
[13] B. K. Crone, I. H. Campbell, P. S. Davids, and D. L. Smith, “Charge injection and transport in
single-layer organic light-emitting diodes” , Appl. Phys. Lett., vol. 73, no. 21, pp. 3162-3164,
23 November 1998.
[14] B. K. Crone, I. H. Campbell, P. S. Davids, D. L. Smith, C. J. Neef et al., “Device physics of
single layer organic light-emitting diodes”, J. Appl. Phys. vol. 86, no. 10, pp. 5767- 5774, 15
November 1999.
[15] B. K. Crone, P. S. Davids, I. H. Campbell, and D. L. Smith, “Device model investigation of
bilayer organic light emitting diodes”, J. Appl. Phys. vol. 87, no. 4, pp. 1974-1982, 15
February 2000.
[16] Aline P. Roque, Luiza A. Mercante, Vanessa P. Scagion, Juliano E. Oliveira,Luiz H. C.
Mattoso, Leonardo De Boni, Cleber R. Mendonca, Daniel S. Correa, “Fluorescent
PMMA/MEH-PPV electrospun nanofibers: investigation of morphology, solvent, and surfactant
1388–1394, 2014.
[17] Jie Li , Tetsuya Nakagawa , Qisheng Zhang , Hiroko Nomura , Hiroshi Miyazaki , and
Chihaya Adachi, “Highly efficient organic light-emitting diode based on a hidden thermally activated delayed fluorescence channel in a heptazine derivative”, Adv. Mater., Vol.25, Issue
24, pp. 3319–3323, 2013.
[18] Ning Li, Satoshi Oida, George S. Tulevski, Shu-Jen Han, James B. Hannon, Devendra K.
Sadana, Tze-Chiang Chen, “Efficient and bright organic light-emitting diodes on single-layer
graphene electrodes”, Nature Communications 4, 2294, pp. 1-7, 2013.
[19] Xiao Huang, Zhiyuan Zeng, Zhanxi Fan, Juqing Liu, and Hua Zhang, “Graphene-based
electrodes”, Adv. Mater., vol. 24, Issue 45, pp. 5979–6004, 2012.
[20] Jeonghun Kwak, Wan Ki Bae, Donggu Lee, Insun Park, Jaehoon Lim, Myeongjin Park,
Hyunduck Cho,Heeje Woo, Do Y. Yoon, Kookheon Char,Seonghoon Lee, and Changhee Lee,
“Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted
device structure”, Nano Lett., vol. 12, pp. 2362−2366, 2012.
[21] Jing Gao, Xue Mu, Xiao-Yun Li, Wen-Yi Wang, Yan Meng, Xiao-Bing Xu, Li-Ting Chen, LiJun Cui, Xiaoming Wu, and Hong-Zhang Geng, “Modification of carbon nanotube transparent
conducting films for electrodes in organic light-emitting diodes”, Nanotechnology, vol.24,
43520, pp. 1-8, 2013.
[22] Lu Lian, Dan Dong, Shuai Yang, Bingwu Wei, and Gufeng He, “highly conductive and uniform
alginate/silver nanowire composite transparent electrode by room temperature solution
processing for organic light emitting diode”, ACS Applied Materials & Interfaces, vol. 9, no.13,
pp 11811–11818, 2017.
[23] Hung-Chi Chen, Jiun-Haw Lee,Member, IEEE, Chia-Chiang Shiau, Chih-Chung Yang,Senior
Member, IEEE, and Yean-Woei Kiang,Member, IEEE, “Electromagnetic modeling of organic
light-emitting devices”, journal of lightwave technology, vol. 24, no. 6, pp. 2450-2457, 2006.
[24] C. K. F. Weilerand S. Körkel, “Optimum experimental design for extended Gaussian disorder
modeled organic semiconductor devices”, J. Appl. Phys. vol. 113, 094903, pp. 1-6, 2013.
[25] U. Wolf, V. I. Arkhipov, and H. Bassler, “Current injection from a metal to a disordered
hopping system. I. Monte Carlo simulation”, PHYSICAL REVIEW B, vol. 59, no. 11, pp.
7505-7513, 15 March 1999.
[26] H. Razafitrimo a, Y. Gao a, W.A. Feld b, B.R. Hsieh, “A layer-wise topographic study of
a polymeric light-emitting diode: indium-tin oxide / poly ( 2,3-diphenyl-p-phenylene
vinylene) / Ag”, Synthetic Metals, vol. 79, pp. 103-106, 1996.
[27] Wen-Liang Yeh, Hsin-Lung Chen, Show-An Chen, “Synthesis and spectral characterizations of
electroluminescent poly(2,3-di-[p-(2-ethylhexoxy)phenyl]-1,4-phenylenevinylene)”, Synthetic
Metals, vol. 157, pp. 407–413, 2007.
[28] Yu-Chun Wu, Xiang-Kui Ren, Er-Qiang Chen, Hsun-Mei Lee, Jean-Luc Duvail, Chien-Lung
Wang, and Chain-Shu Hsu, “Preservation of Photoluminescence Efficiency in the Ordered
phases of Poly(2,3-diphenyl-1,4-phenylenevinylene) via Disturbing the Intermolecular π−πInteractions with Dendritic Aliphatic Side Chains”, Macromolecules, vol. 45, pp.
4540−4549, 2012.
[29] Yung-Ming Liao, Hung-Min Shih, Kuang-Hui Hsu, Chain-Shu Hsu, Yu-Chiang Chao, ShengChia Lin, Chun-Yao Chen, Hsin-Fei Meng, “High-performance poly(2,3-diphenyl-1,4-
phenylene vinylene)-based polymer light-emitting diodes by blade coating method”, Polymer,
vol. 52, pp. 3717-3724, 2011.
[30] Sheng-Hsiung Yang, Jiun-Tai Chen, An-Kuo Li, Chun-Hao Huang, Kuei-Bai Chen, Bing-R.
Hsieh, Chain-Shu Hsu,” New soluble poly(2,3-diphenylphenylene vinylene) derivatives for
light-emitting diodes”, Thin Solid Films, vol. 477, pp. 73 – 80., 2005.
[31] Yung-Ming Liao, Hung-Min Shih, Kuang-Hui Hsu, Chain-Shu Hsu, Yu-Chiang Chao, ShengChia Lin, Chun-Yao Chen, Hsin-Fei Meng,” High-performance poly(2,3-diphenyl-1,4-
phenylene vinylene)-based polymer light-emitting diodes by blade coating method”, Polymer,
vol. 52, pp. 3717-3724, 2011.
[32] Jiun-Tai Chen, Chain-Shu Hsu,”Poly(2,3-diphenyl-1,4-phenylenevinylene) (DP-PPV)
derivatives: Synthesis, properties, and their applications in polymer light-emitting diodes”,
Polymer, vol. 54, pp. 4045-4058, 2013.
[33] Chang S. M.; Su P. K.; Lin G. J. and Wang T. J., “Bluish-green to orange-red flexible lightemitting devices using copolymers of DP6-PPV and MEH-PPV”, Synthetic Metals, vol. 137,
pp. 1025–1026, 2003.
[34] E. Ettedgui, H. Razafitrimo, and Y. Gao, “Evidence for the Formation of Unoccupied States in
Poly(2,3-Diphenylphenylene Vinylene) Following the Deposition of Metal”, Physical Review
Letters, vol.76, no.2, pp. 299-302, 1996.
[35] J. Hromcova, D. Donoval, And J. Rack, “Numerical Simulation of a Metal-SemiconductorMetal Structure with Schottky Contacts at Both Ends”, phys. stat. sol. (a), vol. 142, pp. 167-
175, 1994.
[36] Fei-ping Lu, Xiao-bin Liu, and Yong-zhong Xing, “Numerical study of the influence of applied
voltage on the current balance factor of single layer organic light-emitting diodes”, Journal of
Applied Physics, vol. 115, pp. 164508 (1-6), 2014.
[37] Wolfgang Brutting, Jorg Frischeisen, Tobias D. Schmidt, Bert J. Scholz, and Christian Mayr,
“Device efficiency of organic light-emitting diodes: Progress by improved light out coupling”,
Phys. Status Solidi A, pp. 1–22, 2012.
[38] H. Siemund, F. Bröcker, and H. Göbel, “Enhancing the electron injection in polymer lightemitting diodes using a sodium stearate/aluminum bilayer cathode”, Organic Electronics, vol.
14, pp. 335–343, 2013.
[39] G. G. Malliaras and J. C. Scott, “Numerical simulations of the electrical characteristics and the
efficiencies of single-layer organic light emitting diodes”, J. Appl. Phys. vol.85, no.10, pp.
7426- 7432, 1999.
[40] Y. Kawabe, M. M. Morrell, G. E. Jabbour, S. E. Shaheen, B. Kippelen et al, “A numerical study
of operational characteristics of organic light-emitting diodes”, Journal Of Applied Physics, vol.
84, no. 9, pp. 5306-5314, 1998.
[41] Y.D. Jin, J.P. Yang, P.L. Heremans, M. Van der Auweraer, E. Rousseau, H.J. Geise, G. Borghs,
“Single-layer organic light-emitting diode with 2.0% external quantum efficiency prepared by
spin-coating”, Chemical Physics Letters, vol. 320, pp.387–392, 2000.
[42] Prof. Wenping Hu, Organic Electronics, Germany, Wiley-VCH Verlag GmbH & Co. KGaA,
Boschstr, 2013, p. 294-296.
[43] L. Pareira, Organic light emitting diode: The use of rare-earth and transition metals. New
York: CRC Press Taylor & Francis Group, 2012, p. 66-69.




How to Cite

K. Benatia, & A. Telia. (2018). ELECTRICAL AND OPTICAL NUMERICAL MODELING OF DP-PPV BASED POLYMER LIGHT EMITTING DIODE. Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 17(2), 229–245. https://doi.org/10.1590/2179-10742018v17i21210



Regular Papers