ALL-OPTICAL LOGIC GATES DEVICES BASED ON SPP COUPLING BETWEEN GRAPHENE SHEETS
DOI:
https://doi.org/10.1590/2179-10742018v17i21186Keywords:
Chemical Potential, Graphene SPP, Logic Gates, Nanophotonic devicesAbstract
The aim of this work is to propose all-optical logic gates based on surface plasmon polaritons (SPP's) coupling among spatially separated graphene sheets. This model consists of graphene nanoribbons embedded in silica (SiO2) substrate place ina distance such that allow an efficient coupling between the plasmonic modes of the waveguides. It was numerically analyzed the propagation´s behavior of the SPP modes in an interferometric device as function of the chemical potential and geometrical parameters in order to obtain the AND/OR/XOR logic gates for OOK modulation.
References
waveguides, Nano Lett. 12 (11) (2012) 5784–5790.
[2] Chen, W.; Yang, L.; Wang, P.; Zhang, Y.; Zhou, L.; Yang, T.; Wang, Y.; Yang, J. Electro-optical logic gates based on
graphene–silicon waveguides. Opt. Commun. 2016, 372, 85–90.
[3] H. Wei, Z.X. Wang, X.R. Tian, M. Kall, H.X. Xu, Cascaded logic gates in nanophotonic plasmon networks, Nature
Commun. 2 (387) (2011) 1–5.
[4] Y. Zhang, Y. Zhang, B. Li, Highly-efficient directional emission from photonic crystal waveguides for coupling of
freely propagated terahertz waves into Si slab waveguides, Opt. Express 15 (15) (2007) 9281–9286.
[5] H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N.J. Halas, H. Xu, Quantum dot-based local
field imaging reveals plasmon-based interferometric logic in silver nanowire networks, Nano Lett. 11 (2) (2011) 471–475.
[6] Y.L. Fu, X.Y. Hu, Q.H. Gong, Silicon photonic crystal all-optical logic gates, Phys. Lett. A 377 (3–4) (2013) 329–333.
[7] C.C. Lu, X.Y. Hu, Y. Song, Y.L. Fu, H. Yang, Q.H. Gong, Ferroelectric hybrid plasmonic waveguide for all-optical logic
gate applications, Plasmonics 8 (2) (2013) 749–754.
[8] D. Pan, H. Wei, H. Xu, Optic interferometric logic gates based on metal slot waveguide network realizing whole
fundamental logic operations, Opt. Express 21 (8) (2013) 9556–9562.
[9] V.R. Almeida, C.A. Barrios, R.R. Panepucci, M. Lip-son, All-optical control of light on a silicon chip, Nature 431 (7012)
(2004) 1081–1084.
[10] Q. Xu, M. Lipson, All-optical logic based on silicon micro-ring resonators, Opt. Express 15 (3) (2007) 924–929.
[11] Z.H. Zhu, W.M. Ye, J.R. Ji, X.D. Yuan, C. Zen, High-contrast light-by-light switching and AND gate based on
nonlinear photonic crystals, Opt. Express 14 (5) (2006) 1783–1788.
[12] Q. Liu, Z. Ouyang, C.J. Wu, C.P. Liu, J.C. Wang, All- optical half adder based on cross structures in two-dimensional
photonic crystals, Opt. Express 16 (23) (2008) 18992–19000.
[13] M.W. McCutcheon, G.W. Rieger, J.F. Young, D. Da-lacu, P.J. Poole, R.L. Williams, All-optical conditional logic with
a nonlinear photonic crystal nanocavity, Appl. Phys. Lett. 95 (22) (2009) 221102.
[14] Y. Liu, F. Qin, Z.-M. Meng, F. Zhou, Q.-H. Mao, Z.-Y. Li, All-optical logic gates based on two-dimensional lowrefractive-index nonlinear photonic crystal, Opt. Express 19 (3) (2011) 1945–1953.
[15] Xiaoting Wu, Jinping Tian, Rongcao Yang, A type of all-optical logic gate based on graphene surface plasmon
polaritons, In Optics Communications, Volume 403, 2017, Pages 185-192
[16] M. Yarahmadi, M.K.M. Farshi, L.L. Yousefi, Subwavelength graphene-based plasmonic THz switches and logic gates,
IEEE Tran. THz Sci. Tech. 5 (5) (2015) 725– 731
[17] OOI, Kelvin J. A. et al. Electro-optical graphene plasmonic logic gates. Optical Society of America, (2014).
[18] WANG, Bing et al. Optical coupling of surface plasmons between graphene sheets, Applied Physics Letters 100,
131111 (2012). Solid State Communications, 150 pp. 1770 1773, (2010).
[19] M. L. Brongersma and P. Kik, Surface Plasmon Nanophotonics, (Springer, Dordrecht, 2007).
[20] OOI, Kelvin J. A. et al. Mid-infrared active graphene nanoribbon plasmonic waveguide devices, Soc. Am. B 30, 3111
(2013).
[21] S. A. Mikhailov and K. Ziegler, New electromagnetic mode in graphene, Phys. Rev. Lett. 99, 016803 (2007).
[22] WANG, Bing; WANG, Guo Ping. Surface plasmon polariton propagation in nanoscale metal gap waveguides, Optical
Society of America, (2004).
[23] Kuzmin, D. A. et al. Transverse-electric plasmonic modes of cylindrical graphene-based waveguide at near-infrared
and visible frequencies. Sci. Rep. 6, 26915; doi: 10.1038/srep26915 (2016).
[24] XIAO, Ting-Hui; GAN, Lin; LI, Zhi-Yuan. Graphene surface plasmon polaritons transport on curved substrates,
Photon. Res. (2015).