• K. Azouzi
  • A. H. Boudinar
  • F. A.Aimer
  • A. Bendiabdellah



Induction motor, Motor current signature analysis (MCSA), Broken bar, SVD, Kalman filter


This paper describes a new parametric spectral estimator for the identification of rotor bar fault of an induction motor using stator current analysis. This approach combines two methods: The first one, the Singular Value Decomposition method which allows the accurate detection and location of the fault's signature frequency. The second method allows the estimation of the fault amplitude. To this end, the Kalman filter is used for its efficient estimation of both amplitude and phase estimation using the frequencies estimated by the first method. This combination of both methods gives a better frequency resolution for a very short acquisition time, which cannot be obtained using the conventional method of the Periodogram. Moreover, in order to reduce the significant computation time resulting from the use of the Kalman filter, the proposed approach is applied only to the frequency band where the fault signature is able to appear. A series of tests will be carried out on real signals representing rotor faults.


[1] P. Karvelis, G. Georgoulas, I.P. Tsoumas, J.A. Antonino-Daviu, V. Climente-Alarcón, and C.D. Stylios,
"ASymbolic Representation Approach for the Diagnosis of Broken Rotor Bars in Induction Motors", IEEE on
Industrial Informatics, Vol 11 No.5, pp. 1028 – 1037, 2015.
[2] A. Bendiabdellah , A.H. Boudinar, N. Benouzza, and M. Khodja, "The enhancements of broken bar fault detection in
induction motors ", In IEEE of the International Conference on Electrical Machines and Power Electronics ,
International Conference on Optimization of Electrical & Electronic Equipment and International Symposium on
Advanced Electromechanical Motion Systems , Side., Turkey, pp. 81–86, 2015
[3] A. Stefani, A. Bellini, and F. Filippetti, "Diagnosis of Induction machines’Rotor Faults in Time-Varying Conditions",
IEEE Transaction on Industrial Electronics, Vol. 56 No. 11, pp. 4548-4556, 2009
[4] S. Toscani, M. Faifer, M. Rossi, L. Cristaldi, and M. Lazzaroni, "Effects of the Speed Loop on the Diagnosis of Rotor
Faults in Induction Machines ", IEEE Transactions on Instrumentation And Measurement, Vol. 61 No. 10, pp.2713-
2722, 2012
[5] S.H. Kia, H. Henao, and G.A Capolino, "Zoom-MUSIC frequency estimation method for three phase induction
machine fault detection", in IEEE Annual Conference of Industrial Electronics Society, pp.2603-2608, 2005.
[6] A. C. Hernandez, J. A. Daviu, J. P. Llinares, V. C. Alarcon and V. F. Galiana, "Transient-Based Rotor Cage
Assessment in Induction Motors Operating With Soft Starters," IEEE Transactions on Industry Applications, vol. 51,
No. 5, pp. 3734-3742, Sept.-Oct. 2015.
[7] F.A. Aimer, A.H. Boudinar, and A. Bendiabdellah, " Asynchronous Motor Rotor Faults Detection and Location using
the Short Time Fourier Transform Approach", Journal of Electrical Engineering, Vol. 14, No. 18,pp.1-5, 2014.
[8] E. H. Bouchikhi, V. Choqueuse, M. E. H. Benbouzid, J. F. Charpentier and G. Barakat, "A comparative study of timefrequency representations for fault detection in wind turbine," IECON 2011 - 37th Annual Conference of the IEEE
Industrial Electronics Society, Melbourne, VIC, , pp. 3584-3589,2011.
[9] H. Henao, G.A. Capolino, M. Fernández-Cabanas, F. Filippetti, C. Bruzzese, E. Strangas, R. Pusca, J. Estima, M. RieraGuasp, and S.H. Kia, "Trends in Fault Diagnosis for Electrical Machines", IEEE Ind. Electron. Magazine, Vol. 8 No. 2,
pp. 31–42, 2014.
[10] Y.S. Park, L.R. Hochberg, E.N. Eskandar, S.Cash Sydney, W. Truccolo, "Adaptive parametric spectral estimation with
Kalman smoothing for online early seizure detection", In IEEE/EMBS 2013 6th Conference on Neural Engineering, San
Diego, CA, pp. 1410–413, 2013
[11] E.H. El Bouchikhi, V. Choqueuse, and M.E.H. Benbouzid, "Induction Machine Faults Detection using Stator Current
Parametric Spectral Estimation", Mechanical Systems and Signal Processing, Vol. 52-53, pp 447–464, 2015.
[12] K. Yahia, M. Sahraoui, A. J. M. Cardoso and A. Ghoggal, "The Use of a Modified Prony's Method to Detect the
Airgap-Eccentricity Occurrence in Induction Motors," IEEE Transactions on Industry Applications, vol. 52, No. 5, pp.
3869-3877, 2016.
[13] D. Morinigo-Sotelo, R. J. Romero-Troncoso, J. A. Antonino-Daviu and K. N. Gyftakis, "Reliable detection of broken
rotor bars in induction motors via MUSIC and ZSC methods," 2016 XXII International Conference on Electrical
Machines (ICEM), Lausanne, pp. 2881-2886, 2016.
[14] B. Xu, L. Sun, L. Xu and G. Xu, "An ESPRIT-SAA-Based Detection Method for Broken Rotor Bar Fault in Induction
Motors," IEEE Transactions on Energy Conversion, vol. 27, no. 3, pp. 654-660, 2012.
[15] A.H. Boudinar, N. Benouzza, A. Bendiabdellah, and M.E.A. Khodja, "Induction Motor Bearing Fault Analysis Using a
Root-MUSIC Method ", IEEE Transactions on Industry Applications, Vol. 52 No.5, pp. 3851–3860,2016.
[16] Y. Trachi, E. Elbouchikhi, V. Choqueuse and M. E. H. Benbouzid, "Induction Machines Fault Detection Based on
Subspace Spectral Estimation," IEEE Transactions on Industrial Electronics, vol. 63, No. 9, pp. 5641-5651, 2016.
[17] M. Sahraoui, A.J. Marques Cardoso, and A. Ghoggal, "The Use of a Modified Prony’s Method to Track the Broken
Rotor Bars Characteristic Frequencies and Amplitudes, in Three-Phase Induction Motors", IEEE Transactions on
Industry Applications, Vol. 51 No. 3, pp. 2136–2147, 2015.
[18] A. Toloei, S. Niazi, "State Estimation for Target Tracking Problems with Nonlinear Kalman Filter Algorithms, "
International Journal of Computer Applications, Vol. 98, No.1, pp. 30-36, 2014.
[19] C.K. Chui, G. Chen, Kalman Filtering with Real-Time Applications, Springer, Berlin, 2009.
[20] T. Ameid, A. Menacer, H. Talhaoui,and I. Harzelli, "Rotor resistance estimation using Extended Kalman filter and
spectral analysis for rotor bar fault diagnosis of sensorless vector control induction motor," Measurement(ELSEVIER),
Vol.111, , pp. 243-259, 2017.
[21] F. Alonge, F. D'Ippolito and A. Sferlazza, "Sensorless Control of Induction-Motor Drive Based on Robust Kalman
Filter and Adaptive Speed Estimation," IEEE Transactions on Industrial Electronics, vol. 61, No. 3, pp. 1444-1453,
[22] Y.H. Kim, Y.W. Youn, D.H. Hwang, J.H. Sun, and D.S. Kang, "High-Resolution Parameter Estimation Method to
Identify Broken Rotor Bar Faults in Induction Motors", IEEE Transactions on Industrial Electronics, Vol. 60, No. 9,
pp.4103-4117, 2013
[23] J.H. Jung, J.J. Lee, and B.H. Kwon, "Online Diagnosis of Induction Motors Using MCSA", IEEE Transactions on
Industrial Electronics,Vol. 53 No.6, pp.1842–1852, 2006.
[24] S. Chakkor, M. Baghouri, and A. Hajraoui, "Performance Analysis of Faults Detection in Wind Turbine Generator
Based on High-Resolution Frequency Estimation Method", International Journal of Advanced Computer Science and
Applications,Vol. 5 No.4, pp.139–148, 2014.
[25] H. Jiang, J. Chen, G. Dong, T. Liu, and G. Chen, "Study on Hankel matrix-based SVD and its application in rolling
element bearing fault diagnosis", Mechanical Systems and Signal Processing, Vol. 52-53, pp. 338–359, 2015.
[26] F. Auger, M. Hilairet, J.M. Guerrero, E. Monmasson, T. Orlowska-Kowalska, and S. Katsura, "Industrial applications
of the Kalman filter A Review", IEEE Transactions on Industrial Electronics,Vol. 60 No.12, pp. 5458–5471, 2013.




How to Cite

K. Azouzi, A. H. Boudinar, F. A.Aimer, & A. Bendiabdellah. (2018). USE OF A COMBINED SVD-KALMAN FILTER APPROACH FOR INDUCTION MOTOR BROKEN ROTOR BARS IDENTIFICATION. Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 17(1), 85–101.



Regular Papers