• ndira S. V. Yepes
  • Marcos R. R. Gesualdi




Digital holography, Dynamic process, Imaging systems, Optoelectronic devices


In this work, we present the optical recording and reconstruction of dynamic 3D digital holograms using optoelectronic devices. Digital Holography technique allows recording and reconstruction of three-dimensional images of real objects, since a hologram presents both the intensity and phase information about the object. The experimental implementation of digital holographic systems for recording, as well as for numerical and optical reconstruction of three-dimensional objects became possible. We developed an experimental setup that allowed the optical recording (construction) of dynamic digital holograms (DHs) from real three-dimensional objects in CCD cameras, together with their numerical reconstruction and their optical reconstruction in a dynamic process by using a spatial light modulator, SLM; it was used a single holographic experimental setup in the entire process. We have obtained good results that enable excellent prospects for applications in recording and reconstruction of 3D scenes.


[1] D. Gabor, "A new microscopic principle," Nature, vol. 161, no. 777, 1948.
[2] P. Hariharan, Optical Holography: Principles, techniques, and applications, 2 ed., Cambridge University Press, 1996.
[3] J. W. Goodman, Introduction to Fourier Optics, 3 ed., Roberts \& Company Publishers, 2005.
[4] J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen and B. Lee, "Three-dimensional display
technologies of recent interest: principles, status, and issues [Invited]," Appl. Opt., v. 50, no. 34, pp. H87--H115, 2011.
[5] A. M. Smith, Holographic Recording Materials, Springer-Verlag, Berlin, 1977.
[6] J. P. Huinard and P. Gunter, Photorefractive Effects and Materials I, Photorefractive Materials and Their Applications
II, Topics in Appl. Phys., Berlin: Springer, 1988.
[7] J. Frejlich, Photorefractive materials, New Jersey: Wiley-Interscience, 2007.
[8] M. R. R. Gesualdi, D. Soga and M. Muramatsu, "Surface Contouring by Phase-shifting Real-Time Holography using
Photorefractive Sillenite Crystals," Optics and Laser Tech., vol. 39, pp. 98-104, 2007.
[9] M. R. R. Gesualdi, D. Soga, M. Muramatsu and R. D. P. Jr., "Wave optics analysis by phase-shifting real-time
holographic interferometry," Optik (Stuttgart), pp. 01-05, 2008.
[10] M. R. R. Gesualdi, D. Soga and M. Muramatsu, "Real Time Holographic Interferometry using Photorefractive Sillenite
Crystals with Phase-Stepping Technique," Optics and Laser Engineering., vol. 44, no. 1, pp. 56-67, 2006.
[11] M. R. R. Gesualdi, E. A. Barbosa and M. Muramatsu., "Advances in Phase-Stepping Real-Time Holography using
Photorefractive Sillenite Crystals," Journal of Optoelectronics and Advanced Materials, vol. 8, p. 1574, 2006.
[12] M. R. R. Gesualdi, M. Mori, M. Muramatsu, E. A. Liberti and E. Munin, "Phase-Shifting Real-Time Holographic
Interferometry applied load transmission evaluation in dried human skull," Appl. Optics, vol. 46, p. 5419, 2007.
[13] M. R. R. Gesualdi and E. A. B. M. Muramatsu, "Light-induced Lens Analysis employing Phase-Shifting Real Time
Holographic Interferometry," Optics Communications, vol. 281, pp. 5739-5744, 2008.
[14] G. Caroena, M. Mori, M. R. R. Gesualdi, E. A. Liberti, E. Ferrara, M. Muramatsu, "Mastigation Effort Study using
Photorrefractive Holographic Interferometry Technique", Journal of Biomechanics,v. 43, pp. 680-686, 2010.
[15] M.R.R. Gesualdi, I. V. Brito, J. Ricardo, F. Palacios, M. Muramatsu and J. L. Valin, "Photorefractive digital
holographic microscopy: a application in microdevices surfaces," JMOe, v. 12, pp. 594-601, 2013.
[16] J. Ricardo, M. Muramatsu, F. Palacios, M. R. R. Gesualdi, J. Valin and M. A. Prieto Lopez, "Digital holographic
microscopy with photorefractive sillenite Bi12SiO20 crystals," Opt. and Las. in Engineering, v. 51, pp. 949-952, 2013.
[17] N. Akhter, G. Min, J. W. Kim and B. H. Lee, "A comparative study of reconstruction algorithms in digital holography,"
Optik - International Journal for Light and Electron Optics, vol. 124, no. 17, p. 2955–2958, 2012.
[18] B. Javidi and S.-H. Hong, "Three-Dimensional Holographic Image Sensing and Integral Imaging Display," J. Display
[19] M. Sutkowski and M. Kujawinska, "Application of liquid crystal (LC) devices for optoelectronic reconstruction of
digitally stored holograms," Optics and Lasers in Engineering, vol. 33, no. 3, pp. 191 - 201, 2000.
[20] T. Ito, T. Shimobaba, H. Godo and M. Horiuchi, "Holographic reconstruction with a 10- $\mu$m pixel-pitch reflective
liquid-crystal display by use of a light-emitting diode reference light," Opt. Lett., vol. 27, no. 16, pp. 1406--1408, 2002.
[21] U. Gopinathan, D. S. Monaghan, B. M. Hennelly, C. P. M. Elhinney, D. P. Kelly, J. McDonald, T. J. Naughton and J.
T. Sheridan, "A Projection System for Real World Three-Dimensional Objects Using Spatial Light Modulators," J.
Display Technol., vol. 4, no. 2, pp. 254--261, 2008.
[22] H. Zheng, Y. Yu and C. Dai, "A novel three-dimensional holographic display system based on LC-R2500 spatial light
modulator," Optik - International Journal for Light and Electron Optics, vol. 120, no. 9, pp. 431 - 436, 2009.
[23] M. Huebschman, B. Munjuluri and H. Garner, "Dynamic holographic 3-D image projection," Opt. Express, vol. 11, no.
5, pp. 437-445, 2003.
[24] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Boston: Wiley, 2007.
[25] D. P. Kelly, D. S. Monaghan, N. Pandey and e. al., "Digital Holographic Capture and Optoelectronic Reconstruction for
3D Displays," International J. of Digital Multimedia Broadcasting, vol. 759323, 2010.
[26] O. Bryngdahl and F. Wyrowski, "Digital Holography Computer-Generated Hologram," Progr in Optics XXVIII, 1990.
[27] M. Paturzo, P. Memmolo and A. F. et al., "Synthesis and display of dynamic holographic 3D scenes with real-world
objects," Opt. Express, vol. 18, p. 9, 2010.
[28] S. H. Tao, X. C. Yuan and X. Ahluwalia, "The generation of an array of nondiffracting beams by a single composite
computer generated hologram," J. Opt. A: Pure Appl. Opt., vol. 7, 2005.
[29] T. A. Vieira, M. R. R. Gesualdi and M. Zamboni-Rached, "Frozen waves: experimental generation," Optics Letters, vol.
37, pp. 2034-2036, 2012.
[30] S. Grilli, P. Ferraro, S. D. Nicola and e. al., "Whole optical wavefields reconstruction by Digital Holography," Opt.
Express, vol. 9, pp. 294-302, 2001.
[31] J. O. Ricardo, M. Muramatsu, F. Palacios, M. R. R. Gesualdi, O. Font, J. Valin, M. Escobedo, S. Herold, D. F. Palacios,
G. F. Palacios and A. Sánchez, "Digital holography microscopy in 3D biologic samples analysis," J. of Physics.
Conference Series (Online), vol. 274, pp. 012066-1-8, 2011.
[32] Z. Liu, M. Centurion, G. Panotopoulos, J. Hong and D. Psaltis, "Holographic recording of fast events on a CCD
camera," Opt. Lett., vol. 27, pp. 22-24, 2002.
[33] X. Su and Q. Zhang, "Dynamic 3-D shape measurement method: A review," Opt. Las. in Engineering, 48, 191, 2010.
[34] S. Zwick, T. Haist and M. Warber, "Dynamic holography using pixelated light modulators,," Appl. Optics, 49, 25, 2010.
[35] K. Matsushima, Y. Arima and S. Nakahara, "Digitized holography: modern holography for 3D imaging of virtual and
real objects," Appl. Opt., vol. 50, pp. H278-H284, 2011.
[36] X. Xu, "Three-dimensional dancing bear shows the way to practical holographic display," SPIE Newsroom, 2013.
[37] S. Li, J. Zhong, J. Weng and C. Hu, "Dynamic digital holography applied to three-dimensional imaging of droplet
evaporation process," Proc. SPIE, vol. 8351, pp. 83512W-83512W-5, 2012.
[38] F. Palacios, D. Palacios, G. Palacios, E. Gonçalves, J. L. Valin, L. Sajo-Bohus and J. Ricardo, "Methods of Fourier
optics in digital holographic microscopy," Optics Communications, vol. 281, no. 4, pp. 550-558, 2008.
[39] R. C. Gonzalez, R. E. Woods and S. L. Eddins, Digital Image Processing Using MATLAB, Pearson Prent. Hall, 2004.
[40] U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related
Techniques, Springer, 2005.




How to Cite

ndira S. V. Yepes, & Marcos R. R. Gesualdi. (2017). DYNAMIC DIGITAL HOLOGRAPHY FOR RECORDING AND RECONSTRUCTION OF 3D IMAGES USING OPTOELECTRONIC DEVICES. Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 16(3), 801–815. https://doi.org/10.1590/2179-10742017v16i3958



Regular Papers

Most read articles by the same author(s)