Hybrid optical-wireless architecture, optical reconfiguration, reconfigurable antennas, slotted waveguide antenna


This paper presents an optically controlled reconfigurable antenna for millimetre-wave frequency range. Silicon switches are used to control the optical reconfiguration, modifying the frequency response and radiation pattern of the antenna design. Therefore, the system can switch between the lightly licensed 28 GHz and 38 GHz frequency bands, useful for future mobile 5G broadband cellular communication networks. Experimental results with the reconfigurable antenna on 16-QAM and 32-QAM wireless transmission supported by photonic downconversion are successfully reported under 78 dB link budget requirement.


[1] J.J. Vegas Olmos, T. Kuri, and K. Kitayama, “Reconfigurable radio-over-fiber networks: Multiple-access functionality
directly over the optical layer”, in IEEE Transactions on Microwave Theory and Techniques, Vol. 58 (11), pp. 3001-3010,
November, 2010.
[2] S. Koenig, F. Boes, D. Lopez-Diaz, J. Antes, R. Henneberger, R. M. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick,
C. Koos, W. Freude, O. Ambacher, I. Kallfass, and J. Leuthold, "100 Gbit/s Wireless Link with mm-Wave Photonics," in
Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, paper PDP5B.4, 2013.
[3] J.J. Vegas Olmos, I. Tafur Monroy, “Fiber-wireless links supporting high-capacity W-band channels” in Proceedings of
PIERS 2013, 2013.
[4] A. M. J. Koonen and M. García Larrodé, "Radio-Over-MMF Techniques—Part II: Microwave to Millimeter-Wave
Systems," J. Lightwave Technol., Vol. 26, pp. 2396-2408, 2008.
[5] Rappaport, T.S.; Shu Sun; Mayzus, R.; Hang Zhao; Azar, Y.; Wang, K.; Wong, G.N.; Schulz, J.K.; Samimi, M.;
Gutierrez, F., "Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!," Access, IEEE , vol.1, no.,
pp.335,349, 2013.
[6] T. S. Rappaport, J. N. Murdock, F. Gutierrez, “State of the Art in 60 GHz Integrated Circuits & Systems for Wireless
Communications”, in Proceedings of the IEEE, August 2011, vol. 99, no. 8, pp. 1390-1436
[7] J. Capmany and D. Novak, "Microwave photonics combines two worlds," Nature. Photonics, Vol. 1, pp 319-330, 2007.
[8] Lona, D. G., Assumpção, R. M., Branquinho, O. C., Abbade, M. L.F., Hernández-Figueroa, H. E. and Sodré, A.
C.,“Implementation and performance investigation of radio-over-fiber systems in wireless sensor networks”, Microw. Opt.
Technol. Lett., Vol. 54, pp. 2669–2675, 2012.
[9] Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband systems”, IEEE Commun. Mag., vol. 49, no.
6, pp. 101–107, Jun. 2011.
[10] P. F. M. Smulders and L. M. Correia, “Characterisation of propagation in 60 GHz radio channels,” Electron. Commun.
Eng. J., pp. 73–80, Apr. 1997.
[11] Christodoulou, C.G.; Tawk, Y.; Lane, S.A.; Erwin, S.R., "Reconfigurable Antennas for Wireless and Space
Applications," Proceedings of the IEEE, vol.100, no.7, pp.2250,2261, July, 2012.
[12] E.Raimundo-Neto, Rosa, F.R.G., M.A.F. Casaroli, I.F.da Costa and M. A. Alberti. “Implementation of an OpticalWireless Network with Spectrum Sensing and Dynamic Resource Allocation using Optically Controlled Reconfigurable
Antennas”, International Journal of Antennas and Propagation, vol. 2014, Article ID 670930, 11 pages, 2014.
[13] Arismar Cerqueira S.Jr.; I.F. da Costa; L.T. Manera and J.A. Diniz, “Optically Controlled Reconfigurable Antenna
Array based on E-shape elements”, International Journal of Antennas and Propagation, vol. 2014, Article ID 750208, 8
pages, 2014.db
[14] Panagamuwa, C.J.; Chauraya, A.; Vardaxoglou, J.C., "Frequency and beam reconfigurable antenna using
photoconducting switches," Antennas and Propagation, IEEE Transactions on , vol.54, no.2, pp.449,454, Feb. 2006.
[15] Tawk, Y.; Costantine, J.; Hemmady, S.; Balakrishnan, G.; Avery, K.; Christodoulou, C.G., "Demonstration of a
Cognitive Radio Front End Using an Optically Pumped Reconfigurable Antenna System (OPRAS)," Antennas and
Propagation, IEEE Transactions on , vol.60, no.2, pp.1075,1083, Feb. 2012.
[16] I. F. da Costa, Arismar Cerqueira S. Jr., L.G. Silva, D. H. Spadoti and A. Bogoni, Tri-band Slotted Waveguide Antenna
Array for Millimetric-waves Applications”, 8th European Conference on Antennas and Propagation (EUCAP 2014), April,
[17] Liao, J. Wang, Y. Chen, W. Tang, J. Wei, J.Xu and Z. Zhao and D. M. Vavriv, “Synthesis, simulation and experiment
of unequally spaced resonant slotted-waveguide antenna arrays based on the infinite wavelength propagation property of
composite right/left-handed waveguide,” IEEE Transactions on antennas and propagation, vol. 60, pp. 3182 – 3194, July
[18] F. Bauer and W. Menzel, “A 79-GHz resonant laminated waveguide slotted array antenna using novel shaped slots in
LTCC,” IEEE Antennas and wireless propagation letters, vol. 12, pp. 296 – 299, 2013.
[19] Kowalczuk, E.K.; Seager, R.D.; Panagamuwa, C.J.; Bass, K.; Vardaxoglou, J.C., "Optimising the performance of an
optically controlled microwave switch," Antennas and Propagation Conference (LAPC), 2012 Loughborough, pp.1,5, 12-13
Nov. 2012
[20] X. Pang, J.J. Vegas Olmos, A. Lebedev, I. Tafur Monroy, “A 15-meter Multi-Gigabit W-band Bidirectional Wireless
Bridge in Fiber-Optic Access Networks” in Proceedings of MWP 2013. IEEE, 2013.
[21] R. M. Borges, Arismar Cerqueira S. Jr and T. N. Rodovalho, “Reconfigurable multi-band radio-frequency transceiver
based on photonics technology for future optical wireless communications“, IET Optoelectronics v.9, p. 257-262, 2015.
[22] Theodore S. Rappaport, “Wireles Communications: Principles and Practice”, Prentice Hall, 2nd edition, 2002.




How to Cite

OPTICALLY CONTROLLED RECONFIGURABLE ANTENNA FOR 5G FUTURE BROADBAND CELLULAR COMMUNICATION NETWORKS. (2017). Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 16(1), 208–217. https://doi.org/10.1590/2179-10742017v16i1883



Regular Papers