AN IMPROVED METHOD FOR ACQUISITION OF THE PARAMETERS OF JILES-ATHERTON HYSTERESIS SCALAR MODEL USING INTEGRAL CALCULUS

DOI:

https://doi.org/10.1590/2179-10742017v16i1880

Keywords:

Cauchy problem, Maclaurin's series, Magnetic hysteresis, magnetic materials

Abstract

An accurate modeling of materials is essential to obtain reliable results in fields calculation. The Jiles-Atherton approach is widely used for modeling the magnetic hysteresis and depends on its set of five parameters to properly represent material. In this article is proposed an original methodology for obtaining this set of parameters avoiding the derivatives rough calculation and using the calculation of integrals. From the model equations, a new methodology with two nonlinear algebraic systems of five equations in five unknowns is obtained. The initial magnetization curve, the anhysteretic curve and filtering data are not necessary. The proposed methodology also does not restrict the search space of parameters. The parameters assume values in the interval (0,∞). Calculated data were compared with experimental data to validate the methodology. The simulations showed that the proposed method can obtain an accurate set of parameters from a single experimental hysteresis loop and with low computational effort.

References

[1] J. V. Leite, N. Sadowski, P. Kuo-Peng, N. J. Batistela, and J. P. A. Bastos, “The inverse Jiles–Atherton model
parameters identification,” IEEE Trans. Magn., vol. 39, pp. 1397–1400, May 2003.
[2] J. V. Leite, N. Sadowski, P. Kuo-Peng, N. J. Batistela, J. P. A. Bastos, and A. A. de Espíndola, “Inverse Jiles-Atherton
vector hysteresis model,” IEEE Trans. Magn., vol. 40, no. 4, pp. 1769–1775, Jul. 2004.
[3] D. Lederer, H. Igarashit, A. Kost, and T. Honma, “On the parameter identification and application of the Jiles-Atherton
hysteresis model for numerical modelling of measured characteristic,” IEEE Trans. Magn., vol. 35, no. 3, pp. 1211-
1214, May 1999.
[4] P. R. Wilson, J. N. Ross, and A. D. Brown, “Optimizing the Jiles–Atherton model of hysteresis by a genetic algorithm,”
IEEE Trans. Magn., vol. 37, no. 2, pp. 989-993, Mar. 2001.
[5] J. V. Leite, S. L. Avila, N. J. Batistela, W. P. Carpes Jr., N. Sadowski, P. Kuo-Peng, and J. P. A. Bastos, “Real coded
genetic algorithm for Jiles–Atherton model parameters identification,” IEEE Trans. Magn., vol. 40, no. 2, pp. 888-891,
Mar. 2004.
[6] S. Cao, B. Wang, R. Yan, W. Huang, and Q. Yang, “Optimization of hysteresis parameters for the Jiles-Atherton model
using a genetic algorithm,” IEEE Trans. App. Supercond., vol. 14, no. 2, pp. 1157-1160, Jun. 2004.
[7] F. R. Fulginei and A. Salvini, “Softcomputing for the identification of the Jiles–Atherton model parameters,” IEEE
Trans. Magn., vol. 41, no. 3, pp. 1100-1108, Mar. 2005.
[8] M. Toman, G. Stumberger, and D. Dolinar, “Parameter identification of the Jiles–Atherton hysteresis model using
differential evolution,” IEEE Trans. Magn., vol. 44, no. 6, pp. 1098-1101, Jun. 2008.
[9] A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multimodal functions of continuous variables with the
‘simulated annealing’ algorithm,” ACM Transactions on Mathematical Software, vol. 13, pp. 262-280, Sept. 1987.
[10] D. C. Jiles and D. L. Atherton, “Theory of ferromagnetic hysteresis,” Journal of Magnetism and Magnetic Materials,
vol. 61, pp. 48-60, 1986.
[11] D. C. Jiles, J. B. Thoelke, and M. K. Devine, “Numerical determination of hysteresis parameters for the modeling of
magnetic properties using the theory of ferromagnetic hysteresis,” IEEE Trans. Magn., vol. 28, pp. 27–35, Jan. 1992.
[12] N. Sadowski, N. J. Batistela, J. P. A. Bastos, and M. Lajoie- Mazenc, “An inverse Jiles-Atherton model to take into
account hysteresis in time stepping finite element calculations,” IEEE Trans. Magn., vol. 38, no. 2, 2002.
[13] F. B. R. Mendes, J. V. Leite, N. J. Batistela, N. Sadowski, and F. M. S. Suárez, “A new methodology to obtain the
parameters of the scalar Jiles-Atherton hysteresis model,” in CEFC 2012 Proceedings, Annecy, 2012.
[14] J. Manuel Sotomayor Tello, “Lições de equações diferenciais ordinárias,” Rio de Janeiro: Instituto de Matemática Pura
e Aplicada, Projeto Euclides, 1979, pp. 5-7.
[15] Jaime E. Muñoz Rivera, “Cálculo diferencial II & equações diferenciais,” Textos de graduação. Petrópolis. Editora
Gráfica Rondon Ltda, 2007, pp. 35-36.
[16] Norman B. Haaser, Joseph P. Lasalle, and Joseph A. Sullivan, “Análisis matemático 2,” Curso Intermedio, vol. 2.
México. Editoral Trillas, 1970, pp. 517.
[17] [Online]. Available: http://www.mathworks.com/help/optim/ug/equation-solving-algorithms.html.
[18] Rodrigo M. Rosa, “Estudo e implementação do método dogleg para programação não linear,” Trabalho de conclusão de
curso Bacharelado Matemática, UFSC, Florianópolis, SC, 2005.
[19] N. J. Batistela, “Caracterização e modelagem eletromagnética de lâminas de aço ao silício,” Tese Doutor em
Engenharia Elétrica, CTC, UFSC, Florianópolis, SC, 2001.
[20] F. B. R. Mendes, J. V. Leite, N. J. Batistela, N. Sadowski, and F. M. S. Suárez, “Uma nova metodologia para obtenção
de parâmetros do modelo de histerese de Jiles-Atherton,” in MOMAG 2012 Anais de evento, João Pessoa, 2012.
[21] F. B. R. Mendes, J. V. Leite, N. J. Batistela, N. Sadowski, and F. M. S. Suárez, “An improved methodology for
obtaining Jiles-Atherton hysteresis model parameters,” in COMPUMAG 2015 Proceedings, Montréal, 2015.
[22] F. B. R. Mendes, J. V. Leite, N. J. Batistela, N. Sadowski, and F. M. S. Suárez, “Uma nova metodologia para obtenção
dos parâmetros do modelo escalar de histerese de Jiles-Atherton,” in MOMAG 2016 Anais de evento, Porto Alegre,
2016.
[23] F. B. R. Mendes, J. V. Leite, N. J. Batistela, N. Sadowski, and F. M. S. Suárez, “Uma metodologia aprimorada para
obtenção dos parâmetros do modelo escalar de histerese de Jiles-Atherton,” in MOMAG 2016 Anais de evento, Porto
Alegre, 2016.
[24] F. B. R. Mendes, J. V. Leite, N. J. Batistela, N. Sadowski, and F. M. S. Suárez, “Uma metodologia simplificada para a
obtenção dos parâmetros do modelo escalar de histerese de Jiles-Atherton,” in MOMAG 2016 Anais de evento, Porto
Alegre, 2016.
[25] F. B. R. Mendes, J. V. Leite, N. J. Batistela, N. Sadowski, and F. M. S. Suárez, “Inserção do sexto parâmetro no modelo
escalar de histerese de Jiles-Atherton e metodologia para identificação dos parâmetros,” in MOMAG 2016 Anais de
evento, Porto Alegre, 2016.
[26] F. B. R. Mendes, J. V. Leite, N. J. Batistela, N. Sadowski, and F. M. S. Suárez, “A new method for parameters
obtaining of Jiles-Atherton hysteresis scalar model,” in CEFC 2016 Proceedings, Miami, 2016.
[27] F. B. R. Mendes, J. V. Leite, N. J. Batistela, N. Sadowski, and F. M. S. Suárez, “A simplified method for acquisition of
the parameters of Jiles-Atherton hysteresis scalar model without use of derivatives,” in CEFC 2016 Proceedings,
Miami, 2016.
[28] F. B. R. Mendes, J. V. Leite, N. J. Batistela, N. Sadowski, and F. M. S. Suárez, “Insertion of a sixth parameter in JilesAtherton hysteresis scalar model and the method for parameters identification,” in CEFC 2016 Proceedings, Miami,
2016.

Downloads

Published

2017-08-01

How to Cite

AN IMPROVED METHOD FOR ACQUISITION OF THE PARAMETERS OF JILES-ATHERTON HYSTERESIS SCALAR MODEL USING INTEGRAL CALCULUS. (2017). Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 16(1), 165–179. https://doi.org/10.1590/2179-10742017v16i1880

Issue

Section

Regular Papers