COMPUTATIONAL MODELING OF GEOELECTRICAL SOUNDINGS USING PML-FDTD

DOI:

https://doi.org/10.1590/2179-10742017v16i1877

Keywords:

Circular Electric Dipole, Finite-Difference Time-Domain method, Geoelectrical Soundings Modeling, Perfectly Matched Layer

Abstract

The Finite-Difference Time-Domain (FDTD) method was applied in order to analyze the transient responses of geoelectrical soundings that use circular electric dipole (CED) as source over stratified formations. The model was developed in cylindrical coordinates and a perfectly matched layer (PML) was incorporated to the domain to absorb wave reflections at computational grid boundaries. Numeric results are validated with analytic solutions. Comparisons between the transient response of two different type of soundings are performed and results indicate that the transient response of soundings that excite purely TM mode are more sensitive to the variation of electrical characteristics of the medium

References

[1] S. Constable and L. J. Srnka, An introduction to marine controlled-source electromagnetics methods for hydrocarbon
exploration, Geophysics, vol. 72, no.2, pp.3–12, 2007.
[2] E. S. Um and D. L. Alumbaugh, On the physics of the marine controlled-source electromagnetic method, Geophysics,
vol. 72, no.2, pp.13–26, 2007.
[3] R. Streich, Three methods for mitigating airwaves in shallow water marine controlled-source electromagnetic data,
Geophysics, vol. 74, no.5, pp.95–105, 2009.
[4] J. Chen and D. L. Alumbaugh, 3D finite-difference frequency-domain modeling of controlled-source electromagnetic
data: Direct solution and optimization for high accuracy, Geophysics, vol. 76, no.2, pp.89–99, 2011.
[5] Y. Li and S. Dai, Finite element modelling of marine controlled-source electromagnetic responses in two-dimensional
dipping anisotropic conductivity structures, Geophysical Journal International, vol. 185, no.2, pp.622–636, 2011.
[6] D. Yoon, M. S. Zhdanov, H. Cai and A. Gribenko, A Hybrid Finite Difference and Integral Equation Method for
Modeling and Inversion of Marine CSEM Data, 2015 SEG Annual Meeting, 18-23 October, New Orleans, Louisiana,
2015.
[7] M. G. Persova, Y. G. Soloveichik, P. A. Domnikov, D. V. Vagin, Y. I. Koshkina, Electromagnetic field analysis in the
marine CSEM detection of homogeneous and inhomogeneous hydrocarbon 3D reservoirs, Journal of Applied
Geophysics, vol. 119, pp.147–155, Aug. 2015.
[8] G. Gao, and C. Torres-Verdin, and S. Fang, Fast 3D modeling of borehole induction measurements in dipping and
anisotropic formations using a novel approximation technique, Petrophys., vol. 45, no. 4, pp. 335-349, Apr. 2004.
[9] T. Wang and J. Signorelli, Finite-difference modeling of electromagnetic tool response for logging while drilling,
Geophysics, vol. 69, no. 1, pp. 152–160, 2004.
[10] Y.-K. Hue, F. L. Teixeira, L. E. San Martin and M. Bittar, Modeling of EM logging tools in arbitrary 3-D borehole
geometries using PMLFDTD, IEEE Geosci. Remote Sens. Lett., vol. 2, no. 1, pp. 78–81, Jan. 2005.
[11] Y.-K. Hue, F. L. Teixeira, L. E. San Martin and M. Bittar, Threedimensional simulation of eccentric LWD tool response
in boreholes through dipping formations, IEEE Trans. Geosci. Remote Sens., vol. 43, no. 2, pp. 257–268, Feb. 2005.
[12] Y.-K. Hue, and F. L. Teixeira, Analysis of tilted-coil eccentric borehole antennas in cylindrical multilayered formations
for well-logging applications, IEEE Trans. Antennas Propagat., vol. 54, no. 4, pp. 1058–1064, Apr. 2006.
[13] D. Pardo, C. Torres-Verdin, and L.F. Demkowicz, Simulation of multifrequency borehole resistivity measurements
through a metal casing using a goal-oriented hp finite-element method, IEEE Trans. Geosci. Remote Sens. vol. 44, no.
8, pp. 2125-2134, Aug. 2006.
[14] Y.-K. Hue, and F. L. Teixeira, Numerical mode-matching method for tilted-coil antennas in cylindrically layered
anisotropic media with multiple horizontal beds, IEEE Trans. Geosci. Remote Sens., vol. 45, no. 8, pp. 2451–2462,
Aug. 2007.
[15] H. O. Lee and F. L. Teixeira, Cylindrical FDTD analysis of LWD tools through anisotropic dipping-layered earth
media, IEEE Trans. Geosci. Remote Sens., vol. 45, no. 2, pp. 383–388, 2007.
[16] M. S. Novo, L. C. da Silva and F. L. Teixeira, Finite volume modeling of borehole electromagnetic logging in 3-D
anisotropic formations using coupled scalar-vector potentials, IEEE Antennas Wireless Propag. Lett., vol. 6, pp. 549-
552, 2007.
[17] D. Wu, J. Chen, and C. R. Liu, An efficient FDTD method for axially symmetric LWD environments, IEEE Trans.
Geosci. Remote Sens., vol. 46, no. 6, pp. 1652-1656, 2008.
[18] M. S. Novo, L. C. da Silva and F. L. Teixeira, Three-dimensional finitevolume analysis of directional resistivity logging
tools, IEEE Trans. Geosci. Remote Sens., vol. 48, no. 3, pp. 1151-1157, 2010.
[19] H. O. Lee and F. L. Teixeira, Locally conformal FDTD for anisotropic conductive interfaces, IEEE Trans. Geosci.
Remote Sens, vol. 58, pp. 3658-3665, Nov. 2010.
[20] V. S. Mogilatov and B. Balashov, A New Method of Geolectrical Prospecting by Vertical Electric Current Soundings,
Journal of Applied Geophysics, vol. 36, pp.31–41, 1996.
[21] S. L. Helwig, V. S. Mogilatov and B. Balashov, The Use of a Circular Electrical Dipole Source In Hydrocarbon
Exploration, 2010 SEG Annual Meeting, 17-22 October, Denver, Colorado, 2010.
[22] S. L. Helwig, V. S. Mogilatov and B. Balashov, A circular electric dipole: a transmitter for TEM surveys, Russian
Geology and Geophysics, vol. 55,no. 11, pp.1340–1346, Nov. 2014.
[23] A. Haroon, V. S. Mogilatov, M. Goldman, R. Bergers and B. Tezkan, Exploration of resistive targets within shallow
marine environments using the Circular Electrical Dipole and the Differential Electrical Dipole methods: A timedomain modelling study, Geophys. J. Int., to appear.
[24] F. L. Teixeira and W. C. Chew, Sistematic Derivation of Anisotropic PML Absorbing Media in Cylindrical and
Spherical Coordinates, IEEE Microwave Guided Wave Lett., vol. 7, no. 11, pp. 371-373, Nov. 1997.
[25] A. Taflove and S. Hagness, Computational Eletrodynamics: The Finite-Difference Time-Domain Method, Boston MS:
Artech House, 2005.

Downloads

Published

2017-08-01

How to Cite

COMPUTATIONAL MODELING OF GEOELECTRICAL SOUNDINGS USING PML-FDTD. (2017). Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 16(1), 120–131. https://doi.org/10.1590/2179-10742017v16i1877

Issue

Section

Regular Papers