THERMAL MONITORING OF PHOTOVOLTAIC MODULE USING OPTICAL FIBER SENSORS

Authors

  • Edson Antonio Santolin
  • Ivo de Lourenço Junior
  • Vinícius Dalla Corte
  • Jean Carlos Cardozo da Silva
  • Valmir de Oliveira

DOI:

https://doi.org/10.1590/2179-10742016v15i4710

Keywords:

Optical fiber sensor, photovoltaic module, thermal monitoring

Abstract

This paper proposes the use of fiber Bragg gratings (FBG) in thermal monitoring of photovoltaic (PV) modules. Results acquired from FBG sensors were compared with two commonly used temperature sensing techniques in PV modules: PT100 sensors and infrared cameras. The experiments were performed using a PV module in actual operating conditions (varying ambient temperature and wind speed). Temperature changes in PV module were monitored with 27 FBG sensors installed on its front surface. During the experiments the ambient temperature, intensity of solar radiation and wind velocity were also monitored. The acquired results showed that FBG sensing technology has a potential for the proposed application.

References

[1] L. Fraas, L. Partain, “Solar cells and their applications”, 2 ed. 644p. John Wiley & Sons Inc. New Jersey, 2010.
[2] International Energy Agency (IEA), “Technology roadmap: Solar photovoltaic energy”, OECD/IEA, IEA publications, Paris 2014.
[3] N. Darghouth, G. Barbose, R. Wiser, “Electricity Bill savings from residential photovoltaic systems: Sensitivities to changes in future
electricity market conditions”, in Market Conditions. Ernest Orlando Lawrence Berkeley National Laboratory, 82p. Berkeley, 2013.
[4] A. Luque, S. Hegedus, “Handbook of photovoltaic science and engineering”, John Wiley & Sons Inc, 2003.
[5] M. Fuentes, G. Nofuentes, J. Aguilera, D. L. Talavera, M. Castro, “Application and validation of algebraic methods to predict the
behaviour of crystalline silicon PV modules in mediterranean climates”, in Solar Energy, vol. 81, issue 11, November 2007, p. 1396-
1408, ISSN 0038-092X.
[6] G. Acciani, G. B. Simione, S. Vergura, “Thermographic analysis of photovoltaic panel”, in European Association for the Development
of Renewable Energies, Environment and Power Quality (EA4EPQ), International Conference on Renewable Energies and Power
Quality (ICREPQ’10), 3p. March 2010.
[7] W. Herrmann, “How temperature cycling degrades photovoltaic-module performance” in International Society Advancing an
Interdisciplinary Approach to the Science and Application of Light (SPIE), doi: 10.1117/2.1201007.003177, 2010.
[8] J. Wohlgemuth, W. Herrmann, “Hot spot testes for crystalline silicon rtd in Photovoltaic Specialists Conference, 2005, Conference
Record of the Thirty-first IEEE, p. 1062-1063, doi: 10.1109/PVSC.2005.1488317, 2005.
[9] A. Q. Jakhrani, A. K. Othman, A. R. Rigit, S. R. Samo, “Comparison of solar photovoltaic module temperature models”, in World
Applied Sciences Journal 14 (Special Issue of Foods and Environment), p. 11, 2011, ISSN: 1818-4952.
[10] M. A. Bohórquez, L. M. Gomes, J. M. A. Marquez, “A new and inexpensive temperature-measuring system: Application to
photovoltaic solar facilities”, in Solar Energy, vol. 83, p. 883-890, 2009, ISSN: 0038-092X.
[11] A. H. Fanney, B. P. Dougherty, “Building integrated photovoltaic test facility”, in Journal of Energy Engineering, Especial issue:
Solar Thermochemical Processing, vol. 123, n. 2, p. 194-199, 2001.
[12] N. Tamchek, A. P. Michael, S. R. Sandoghchi, M. R. Hassan, K. D. Dambul, J. Selvaraj, N. A. Rahim, F. R. Mahamd Adikan,
“Design, characterization and implementation of a fiber Bragg grating temperature sensor for application in solar power electronic
inverters”, in Applied Solar Energy, vol. 47, n. 3, p. 184-188, 2011, doi: 10.3103/S0003701X11030182.
[13] M. A. Ismail, N. Tamchek, M. R. A. Hassan, K. D. Dambul, J. Selvaraj, N. A Rahim, R. Sandoghchi, F. R. M. Adikan, “A fiber Bragg
grating—bimetal temperature sensor for solar panel inverters”, in Sensors, vol. 11, n. 9, p. 8665-8673, 2011, doi:10.3390/s110908665.
[14] A. Othonos, K. Kalli, “Fiber Bragg Gratings Fundamentals and Applications in Telecommunications and Sensing”, Artech House,
1999.
[15] R. M. Cazo, T. H. Hattori, L. C. Barbosa, O. Lisbôa, R. C. Rabelo, “Sensor de deformação usando grades de Bragg”, in Revista
Cientifica Periódica – Telecomunicações, vol. 03, n.2, p. 76-79, 2000, ISSN 1516-2338.
[16] D. Barrera, V. Finazzi, J. Villatoro, S. Sales, V. Pruneri, “Packaged optical sensors based on regenerated fiber Bragg gratings for high
temperature applications”, in Sensors Journal, IEEE, vol. 12, no. 1, p. 107-112, 2012. doi: 10.1109/JSEN.2011.2122254.
[17] R. A. Freitas, “Optical fiber temperature sensors for cryogenic application”, 2014, 77p. Dissertação (Mestrado Integrado em
Engenharia Física), Faculdade de Ciências do Porto, 2014.
[18] E. V. Silva, U. J. Dreyer, K. M. Souza, J. Somenzi, V. J. Babinski, A. B. Di Renzo, F. Mezzadri, J. P. Bazzo, V. Oliveira, H. J.
Kalinowski, C. Martelli, J. C. C. Silva, “Medição de temperatura do estator, radiador e mancal de um gerador de potência de 182MW
utilizando sensores a fibra óptica”, in VII Congresso de Inovação Tecnológica em Energia Elétrica (VII CITENEL), Rio de Janeiro,
2013.
[19] K. M. Souza, W. Probst, F. Bortolotti, C. Martelli, J. C. C. Silva, “Fiber Bragg grating temperature sensor in a 6.5-MW generator
exciter bridge and the development and simulation of its thermal model” in Microwave & Optoelectronics Conference (IMOC),
SBMO/IEEE MTT-S International, p. 1-5, doi: 10.1109/IMOC.2013.6646494, august 2013.
[20] R. M. Measures, “Structural monitoring with fiber optic technology”, in Institute for Aerospace Studies, University of Toronto,
Academic Press, Canada, 2001, ISBN: 9780080518046.
[21] I. Lourenço Junior, “Monitoramento de propriedades mecânicas de polímeros com sensor á rede de Bragg”, 2011, 100p. Tese
(Doutorado em Engenharia Elétrica e Informática Industrial), UTFPR, Curitiba, 2011.
[22] M. C. García, J. L. Balenzategui, “Estimation of photovoltaic module yearly temperature and performance based on Nominal
Operation Cell Temperature Calculations” inRenewable Energy, vol. 29, issue 12, October 2004, p. 1997-2010, ISSN 0960-1481,
http://dx.doi.org/10.1016/j.renene.2004.03.010.
[23] A. M. Reis, N. T. Coleman, M. W. Marshall, P. Lehman, C. E. Chamberlin, “Comparation of PV module performance before and after
11-years offield exposure”, in Proceedings of the Conference Record of the 29th IEEE Photovoltaic Specialist Conference, New
Orleans, LA, USA, p. 1432-1435. ISSN: 1060-8371, doi: 10.1109/PVSC.2002.1190878.
[24] P. Trinuruk, C. Sorapipatana, D. Chenvidhya, “Estimating operating cell temperature of BIPV modules in Thailand,” in Renewable
Energy, vol. 34, issue 11, November 2009, p. 2515-2523, ISSN 0960-1481, http://dx.doi.org/10.1016/j.renene.2009.02.027
[25] R. Gottschalg, “Performance characterization of photovoltaic modules”, in Photovoltaic Specialists Conference (PVSC), pp. 1265-
1270, 35th IEEE, 2010, doi: 10.1109/PVSC.2010.5614204.
[26] K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, ”Bragg Gratings fabricated in monomode photosensitive optical fiber by
UV exposure through a phase mask”, in Applied Physics Letters, vol.62, n. 10, p. 1035-1037, 1993.
[27] E. A. Santolin, I. Lourenço Junior, J. C. C. Silva, V. Oliveira, “Aplicação de Sensores à Fibra Óptica no monitoramento de painéis
fotovoltaicos” in MOMAG 2014: 16º Simpósio Brasileiro de Micro-ondas e Optoeletrônica (SBMO) e 11º Congresso Brasileiro de
Eletromagnetismo (CBMag), Curitiba: UTFPR, p. 837-842, doi: 10.13140/2.1.4445.6969, 2014.
[28] F. Bortolotti, K. M. Souza, J. C. C. Silva, H. J. Kalinowski, “Packaging, characterizationandcalibrationoffiber Bragg
gratingtemperaturesensors” in MOMAG 2013: 15º Simpósio Brasileiro de Micro-ondas e Optoeletrônica (SBMO) e 10º Congresso
Brasileiro de Eletromagnetismo (CBMag), Paraíba, 2013.
[29] GUM,“Avaliação de dados de medição: Guia para a expressão de incertezas de medição”, p. 138, JCGM, 2008.
[30] S. Armstrong, W. G. Hurley, “A thermal model for photovoltaic panels under varying atmospheric conditions” in Applied Thermal
Engineering, vol 30, Issues 11-12, p. 1488-1495, 2010, ISSN: 1359-4311, 2010.

Downloads

Published

2016-08-01

How to Cite

Edson Antonio Santolin, Ivo de Lourenço Junior, Vinícius Dalla Corte, Jean Carlos Cardozo da Silva, & Valmir de Oliveira. (2016). THERMAL MONITORING OF PHOTOVOLTAIC MODULE USING OPTICAL FIBER SENSORS. Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 15(4), 333-348. https://doi.org/10.1590/2179-10742016v15i4710

Issue

Section

Regular Papers

Most read articles by the same author(s)