DUAL-BAND X/KU REFLECTARRAY ANTENNA USING A NOVEL FSS-BACKED UNIT-CELL WITH QUASI-SPIRAL PHASE DELAY LINE

Authors

  • Iman Derafshi
  • Nader Komjani
  • Ensieh Ghasemi-Mizuji
  • Mohammad Mohammadirad

DOI:

https://doi.org/10.1590/2179-10742016v15i3582

Keywords:

Delay line, dual band, FSS-Backed reflectarray antenna, quasi-spiral

Abstract

A novel FSS-Backed reflectarray unit cell is introduced to design a dual-band X/Ku Reflectarray Antenna (RA). A Kuband RA based on this FSS-Backed cell element is designed and located on the top of a conventional X-band RA. Actually, the band-stop Frequency Selective Surface (FSS) property is applied to a wideband element to create isolation between X and Ku bandRAs which utilizing the same radiating element. A wideband cell element with attached quasi-spiral phase delay line is employed for phase compensation in both bands. As a FSS-backed cell element, the remarkable feature of the proposed dual band unit cell compared to previous works is its possibility of operation in closer frequency bands in comparison with other dual band FSS-backed RAs. Two reflectarrays with aperture size of 7.65λ×7.65λ and 7.35λ×7.35λ are designed, fabricated and measured for X band and Ku band, respectively. Measured results show 1-dB gain bandwidth of 12% for X band and 11% for Ku band which demonstrate wideband operation of this dual-band reflectarray antenna.

References

[1] M. R. Chaharmir, J. Shaker, N. Gagnon, and D. Lee, “Design of broadband, single layer dual-band large reflectarray
using multi open loop elements,” IEEE Trans. Antenna Propag.,vol. 58, no. 9, pp. 2875-2883, Sep. 2010.
[2] M. R. Chaharmir, J. Shaker, and N. Gagnon, “Broadband dual-band linear orthogonal polarization reflectarray,”
Electron. Lett.,vol. 45, no. 1, Jan. 2009.
[3] H. Hasani, and C. Piexeiro, “Dual-band, dual-polarized microstrip reflectarray antenna in Ku band,” Loughborough
Antennas & Propagation Conference. Nov. 2012.
[4] C. Han, J. Huang, and K. Chang, “A high efficiency offset-fed X/Ka-dual-band reflectarray using thin membranes,”
IEEE Trans. Antenna Propag.,vol. 53, no. 9, pp. 2792-2798, Sep. 2005.
[5] C. Han, Ch. Rodenbeck, J. Huang, and K. Chang, “A C/Ka dual frequency dual-layer circularly polarized antenna with
microstrip ring elements,” IEEE Trans. Antenna Propag., vol. 52, no. 11, pp. 2871-2876, Nov. 2004.
[6] M. R. Chaharmir, J. Shaker, and M. Cuhaci, “Development of dual-band circularly polarized reflectarray,” IEE
Proceeding-Microwaves Antenna and Propagation, vol. 153, no. 1, pp. 49-54, Feb. 2006.
[7] J. Shaker, and M. Cuhaci, “Multi-band, multi-polarisation reflector-reflectarray antenna with simplified feed system
and mutually independent radiation patterns,” IEE Proceeding-Microwaves Antenna and Propagation, vol. 56, no. 12,
pp. 3700-3706, Dec. 2008.
[8] M. R. Chaharmir, J. Shaker, and H. Legay, “Dual-band Ka/X reflectarray with broadband loop elements,” IET Microw.
Antenna Propag.,vol. 4, lss. 2, pp. 225-231, 2010.
[9] L. Li, Q. Chen, Q. Yuan, k. Sawaya, T. Maruyama, T.Furuno and Sh. Uebayashi, “Frequency selective reflectarray
using crossed-dipole elements with square loops for wireless communication applications,” IEEE Trans. Antenna
Propag.,vol. 59, no. 1, pp. 89-99, Jan. 2011.
[10] Y. Chen, L. Chen, H. Wang, X. Gu and X. Shi, “Dual-band crossed-dipole reflectarray with dual-Band frequency
selective surface,” IEEE Antenna Wireless Propag .Lett, vol. 12, pp. 1157-1160, 2013.
[11] R. D. Javor, X. Wu, and K. Chang, “Design and performance of a microstrip reflectarray antenna,” IEEE Trans.
Antenna Propag., vol. 43, no. 9, pp. 932-939, Sep. 1995.
[12] H. Hasani, M. Kamyab, and A. Mirkamali, “Broadband reflectarray antenna incorporating disk elements with attached
phase-delay line,” IEEE Antenna Wireless Propag. Lett, vol. 9, pp. 156-158, 2010.
[13] R. Sh. Malfajani, and Z. Atlasbaf, “Design and implementation of a broadband single layer circularly polarized
reflectarray antenna,” IEEE Antenna Wireless Propag.Lett, vol. 11, pp. 973-976, 2012.
[14] I .Derafshi, N. Komjani and M. Mohammadirad, “A Single Layer Broadband Reflectarray Antenna by Using Quasispiral Phase Delay Line,” IEEE AWPL,vol. 14, pp. 84-87, 2014.
[15] M. Mohammadirad, N. Komjani, M. Chaharmir, J. Shaker, A. Sebak, ”Phase Error Analysis of the Effect of Feed
Movement on Bandwidth Performance of a Broadband X-Ku Band Reflectarray,” International Journal of RF and
Microwave Computer-Aided Engineering/Vol. 23, No. 5, pp.17-526, 2012.
[16] J. Li, Q. Chen, Q. Yuan, and K. Sawaya, “FSS sandwiched reflectarray for dual–frequency application,”Microwave
Conference Proceedings (APMC), Asia-Pacif1ic. pp. 877 – 880, 2010.
[17] B. Munk, Finite antenna arrays and FSS. Hoboken, N.J.: IEEE Press/Wiley-Interscience, 2003.
[18] J. Huang and J. A. Encinar, Reflectarray Antennas. New York: IEEE Press, Wiley-Interscience, 2008.

Downloads

Published

2016-08-01

How to Cite

Iman Derafshi, Nader Komjani, Ensieh Ghasemi-Mizuji, & Mohammad Mohammadirad. (2016). DUAL-BAND X/KU REFLECTARRAY ANTENNA USING A NOVEL FSS-BACKED UNIT-CELL WITH QUASI-SPIRAL PHASE DELAY LINE. Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 15(3), 225-236. https://doi.org/10.1590/2179-10742016v15i3582

Issue

Section

Regular Papers