ARTIFICIAL IMMUNE NETWORK DESIGN OF OPTICAL MULTIPLEXERS/DEMULTIPLEXERS

Authors

  • Carlos H. Silva-Santos,
  • Vitaly F. Rodríguez-Esquerre
  • Hugo E. Hernández-Figueroa

DOI:

https://doi.org/10.1590/2179-10742015v14i2442

Keywords:

Immune Network Algorithm, Evolutionary Algorithms, Beam Propagation Method, Frequency Domain, Photonic Devices

Abstract

An efficient design approach of directional couplers based multiplexers/demultiplexers for optical communication applications, by using an adapted artificial immune network algorithm for optimization (opt-AiNet), is presented and validated by using the beam propagation method. Two key multiplexers/demultiplexers based on planar waveguides and optical fiber, directional couplers, have been optimized in order to validate the efficiency and usefulness of the opt-AiNet.

References

[1] K. Okamoto, Fundamentals of Optical Waveguides, Academic Press, 2005.
[2] V. F. Rodríguez-Esquerre, A. Dourado-Sisnando, and F. G. S. Silva, "Neural Network Analysis and Design of Directional Couplers,"
in Integrated Photonics Research, Silicon and Nanophotonics and Photonics in Switching, OSA Technical Digest (CD) (Optical
Society of America, 2010), paper JTuB25.
[3] C. H. Silva-Santos, V. F. Rodríguez-Esquerre, and H. E. Hernández-Figueroa, "An Artificial Immune System for Optical Fiber Based
Directional Couplers Multiplexer/Demultiplexers Design," in Latin America Optics and Photonics Conference, OSA Technical Digest
(CD) (Optical Society of America, 2010), paper PDPTuJ5.
[4] E. Hart, Emma; J. Timmis. “Application areas of AIS: The past, the present and the future.” Applied soft computing, v. 8, n. 1, p. 191-
201, 2008.
[5] D. Dasgupt; S. Yu; F. Nino. Recent advances in artificial immune systems: models and applications. Applied Soft Computing, v. 11, n.
2, p. 1574-1587, 2011.
[6] S. Forrest, A.S. Perelson, L. Allen, R. Cherukuri, Self–nonself discrimination in a computer, IEEE Symposium on Research in
Security and Privacy, Los Alamitos, CA, 1994.
[7] M. Basu. Artificial immune system for combined heat and power economic dispatch. International Journal of Electrical Power &
Energy Systems, v. 43, n. 1, p. 1-5, 2012.
[8] M. Shukla; S. Jharkharia. An inventory model for continuously deteriorating agri–fresh produce: an artificial immune system–based
solution approach. International Journal of Integrated Supply Management, v. 9, n. 1, p. 110-135, 2014.
[9] O. Erdinc; M. Uzunoglu. Optimum design of hybrid renewable energy systems: overview of different approaches. Renewable and
Sustainable Energy Reviews, v. 16, n. 3, p. 1412-1425, 2012.
[10] S. Li, et al. Self-adaptive obtaining water-supply reservoir operation rules: Co-evolution artificial immune system. Expert Systems
with Applications, v. 41, n. 4, p. 1262-1270, 2014.
[11] L. N. de Castro, “Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications, Chapman & Hall/CRC, 2006.
[12] L. De Castro, Fundamentals of Natural Computing: An Overview, Physics of Life Reviews (4) 1-36, 2007
[13] L. N. de Castro, J. Timmis, “Artificial Immune Systems: A New Computational Intelligent Approach”, Springer Verlag, London,
2002.
[14] C. H. Silva-Santos, M. S. Gonçalves, H. E. Hernández-Figueroa, “Designing Novel Photonic Devices by Bio-Inspired Computing”,
IEEE Photonics Technology Letter, Vol. 22, Issue 15, 2010.
[15] C. H. Silva-Santos, K. Claudio, M. S. Gonçalves, J. R. Brianeze, H. E. Hernández-Figueroa, “Bio-Inspired Algorithms Applied to
Microstrip Antennas Design”, Journal of Computational Interdisciplinary Science, Vol. 1, Issue 2, 2009.
[16] J. R. Brianeze, C. H. Silva-Santos, H. E. Hernández-Figueroa. "Multiobjective evolutionary algorithms applied to microstrip antennas
design algoritmos evolutivos multiobjetivo aplicados a los proyectos de antenas microstrip." Ingeniare. Revista chilena de
ingeniería 17, 3, 288-298, 2009.
[17] J. Timmis, A. Hone, T. Stibor, E. Clark, “Theoretical advances in artificial immune systems”. Theoretical Computer Science, 403(1),
11-32, 2008.
[18] D. Dasgupta, S. Yu, F. Nino, “Recent advances in artificial immune systems: models and applications.” Applied Soft
Computing, 11(2), 1574-1587, 2011.
[19] A. D. Sisnando, et al. "Artificial immune system optimisation of complete bandgap of bidimensional anisotropic photonic
crystals." IET Optoelectronics 9.6 (2015): 333-340.
[20] A. D. Sisnando, et al. "Power Coupling Optimization by Artificial Immune System." Integrated Photonics Research, Silicon and
Nanophotonics. Optical Society of America, 2014.
[21] C. H. Silva-Santos, H. E. Hernandez-Figueroa. "Parallel bio-inspired algorithms in computational electromagnetics applications." 2011
SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC 2011). 2011.
[22] M. Adams, An Introduction to Optical Waveguides, Wiley, 1986.
[23] Y. Tsuji and M. Koshiba, “Finite element beam propagation method with perfectly matched layer boundary conditions for threedimensional optical waveguides,” Int. J. Numer. Modeling: Electronic Networks, Devices and Fields, vol. 13, pp. 115–126, 2000.

Downloads

Published

2015-08-01

How to Cite

Carlos H. Silva-Santos, Vitaly F. Rodríguez-Esquerre, & Hugo E. Hernández-Figueroa. (2015). ARTIFICIAL IMMUNE NETWORK DESIGN OF OPTICAL MULTIPLEXERS/DEMULTIPLEXERS. Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 14(2), 229–237. https://doi.org/10.1590/2179-10742015v14i2442

Issue

Section

Regular Papers

Most read articles by the same author(s)