A THEORETICAL ANALYSIS OF THE IMPACT OF IRON NANO-INCLUSIONS IN MULTILAYER WAVEGUIDE STRUCTURES WITH RESONANT LAYER EFFECT

Authors

  • Giorgio de M. Magalhães
  • Rodrigo M. de Alencar
  • Douglas K. Paixão
  • Maria Thereza M. Rocco
  • Douglas Fonseca
  • Raphael Pereira
  • Anderson O. Silva
  • Maria Aparecida G. Martinez

Keywords:

Integrated optics, multilayer optical waveguides, resonant layer effect

Abstract

The field confinement in an optical waveguide can be hugely changed if the resonant layer effect (RLE) takes place. The net result is the suppression or enhancement of guided modes according to a proper design of the resonant layer. In this paper, the influence of the RLE on the fundamental TE-mode in a multilayer optical waveguide is theoretically investigated. The resonant layer is composed by Fe nanoparticles incrusted in an InGaAsP slab.  The corresponding field distribution, confinement factor and mode effective index are analyzed as a function of the thickness and fractional volume of Fe inclusions. Computed results indicate promising applications of the RLE to the improvement of integrated optical isolators and polarizers.

References

[1] R. Hunsperger, Integrated Optics: Theory and Technology, 6th ed., Springer, 2009.
[2] D. M.-Hernandez, D. L.-Moreno and D. M.-Escobar, “Fast response fiber optic hydrogen sensor based on palladium
and gold nanolayers,” Sensors and Actuators B, vol. 136, No 2, pp. 562-566, 2009
[3] T. Cheng, C. Hangan and J. E. Sipe, “Metallic nanoparticles on waveguide structures: effects on waveguide mode
properties and the promising of sensing applications,” , Journal of the Optical Society of America B, vol. 30, No 3, pp.
743-765, 2013.
[4] D. E. Aspnes, “Optical properties of thin films,” Thin Solid Films, vol. 89, no. 3, 249-262, 1982.
[5] C. A. Foss, G. L. Hornyak, J. A. Stockert and C. R. Martin, “Template-synthetized nanoscopic gold particles: optical
spectra and the effects of particle size and shape,” Journal of Physics-Chemistry, vol. 98, pp. 2963-2971, 1994.
[6] N. C. Dick, R. C. Denomme and P. M. Nieva, “Effective medium properties of arbitrary nanoparticle shapes in a
localized surface plasmon resonance sensing layer,” The Journal of Pysical Chemistry C, vol. 115, No 31, pp. 15225-
15233, 2011.
[7] A. Moroz, “Depolarization Field of Spheroidal Particles,” Journal of the Optical Society of America B, vol. 26, No 3,
pp. 517-527, 2009.
[8] A. Kumar, V. K. Sharma, D. Kumar and A. Kapoor, “Integrated optic TE/TM pass polarizers using resonant coupling
between ITO thin film lossy modes and dielectric waveguide modes,” Optics Communications, vol. 291, pp. 247-252,
2013.
[9] H. Dötsch, N. Bahlmann, et al., “Applications of Magneto-Optical Waveguides in Integrated Optics: review,”
University of Osnabrück, Germany, 2004.
[10] J. M. Hammer, G. Ozgur, G. A. Evans and J. K. Butler, “Integratable 40 dB Optical Waveguide Isolators Using a
Resonant-Layer Effect with Mode Coupling,” Jounal of Applied Physics, vol. 100, 103103, 2006.
[11] Y. Shirato, Y. Shoji and T. Misumoto, “High isolation in silicon waveguide optical isolator employing nonreciprocal
phase shift,” Proceedings of the Optical Fiber Communication Conference, United States, 2013.
[12] J. M. Hammer, G. A. Evans, G. Ozgur and J. K. Butler, “Isolators, Polarizers, and Other Optical Waveguide Devices
Using a Resonant-Layer Effect,” Journal of Lightwave Technology, vol. 22, No 7, pp. 1754-1763, 2004.
[13] G. M. Magalhães, R. M. de Alencar, D. K. Paixão, M. T. M. R. Giraldi, D. Fonseca, R. Pereira, A. O. Silva and M. A.
G. Martinez, “Análise teórica do impacto de nano-inclusões de ferro em estrutura com efeito de camada ressonante”
Proceedings of the 16th Brazilian Symposium on Microwaves and Optoelectronics and 11th Brazilian Eletromagnetics
Congress, Brazil, pp. 1034-1038, 2014.
[14] A. Sihvola, “Homogenization of a Dielectric Mixture with Anisotropic Spheres in Anisotropic Background,”
Electromagnetics, 17.3, pp. 269-286, 1997.
[15] R. Smith, e G. Mitchell, “Calculation of Complex Propagating Modes in Arbitrary Plane-Layered, Complex Dielectric
Structures,” University of Washington, United States, 1977.
[16] K. Okamoto, “Fundamentals of Optical Waveguides,” 2nd ed, Academic Press, 2006.
[17] A. K. Zvezdin and V. A. Kotov, Modern Magneto-Optics and Magneto-Optical Materials, 1st ed. CRC Press, 1997.
[18] J. H. Weaver, C. Drafka, D. W. Lynch and E. E. Koch, “Optical Properties of Metals,” Applied Optics, vol. 20, pp.
1124-1124, 1981.
[19] J. H. Weaver, C. Drafka, D. W. Lynch and E. E. Koch, “Optical Properties of Metals I: Transition Metals”, ZAED
(Zentalstelle für Atomkernenergie-Dokumentation), University of Karlruhe, Germany, 1981.
[20] G. S. Krinchik and V. A. Artemjev, “Magneto-Optic Properties of Nickel, Iron, and Cobalt,” Jounal of Applied Physics,
vol. 39, No. 2, pp. 1276-1278, 1968.

Downloads

Published

2015-08-01

How to Cite

Giorgio de M. Magalhães, Rodrigo M. de Alencar, Douglas K. Paixão, Maria Thereza M. Rocco, Douglas Fonseca, Raphael Pereira, Anderson O. Silva, & Maria Aparecida G. Martinez. (2015). A THEORETICAL ANALYSIS OF THE IMPACT OF IRON NANO-INCLUSIONS IN MULTILAYER WAVEGUIDE STRUCTURES WITH RESONANT LAYER EFFECT. Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 14, SI–80 to SI. Retrieved from http://www.jmoe.org/index.php/jmoe/article/view/492