GRAPHICAL INTERFACE FOR ELECTROMAGNETIC PROBLEM SOLVING USING MESHLESS METHODS

Authors

  • Leonardo Augusto Ferreira
  • Alexandre Ramos Fonseca
  • Naísses Zoia Lima
  • Renato Cardoso Mesquita
  • Gabriel Cardoso Salgado

Keywords:

GUI, Meshless Methods, Graphics Applications

Abstract

It is common to find a software with a graphical interface that uses the finite element method or the finite difference method to solve electromagnetic problems. However, there are just few software which use meshless methods to solve these problems, and none with a graphical interface. This project aims at developing a graphical software capable of solving Electromagnetic Problems by meshless methods. Among these meshless methods, it is possible to mention the Element Free Galerkin Method (EFG), Meshless Local Petrov Galerkin (MLPG) and Point Interpolation Methods (PIM). The main idea is to enable the user to design the geometry of a problem, choose materials in the domain, impose boundary conditions to choose a meshless method to obtain a solution and view the results in a graphical form. This software-user interaction will be intermediated in the domain by a graphical user interface that makes transparent the using of the meshless method using an intuitive toolkit responsible for the problem design and for the solution visualization.

References

[1] LIU, G. R. Mesh Free Methods: Moving Beyond the Finite Element Method. [S.l.]: CRCPress, 2002.
[2] QTPROJECT. 2014. Available: <http://qt-project.org/>. Access: 01/ 2015.
[3] BLANCHETTE, J. and SUMMERFIELD, M. C++ Gui Programming with Qt 4, Second Edition, 2nd ed. Upper Saddle
River, NJ, USA: Prentice Hall Press, 2008.
[4] CGAL. 2014. Available in: <http://www.cgal.org>. Access: 01/2015.
[5] OPENGL. Access: 01/2015. Available in: <http://www.opengl.org/>.
[6] BOOST. Available in: <http://www.boost.org/> .Access: 01/2015.
[7] TRIANGLE. Available in: <http://www.cs.cmu.edu/~quake/triangle.html>. Access: 01/2015.
[8] BERG, M. de et al. Computational Geometry Algorithms and Applications. Second. [S.l.]: Springer-Verlag, 2000.
[9] SHEWCHUK, J. R. Delaunay RefinementMesh Generation. Tese (Doutorado)—Carnegie Mellon University, 1997.
[10] DOXYGEN. Available in: <http://www.stack.nl/~dimitri/doxygen/index.html>. Access in: 01/2015.
[11] DEITEL, P.; DEITEL, H. C++ How to Program. [S.l.]: Pearson/Prentice Hall, 2006. (How to program series).
[12] VANDEVOORDE, D.; JOSUTTIS, N. C++ Templates: The Complete Guide. [S.l.]: Addison Wesley Professional, 2003.
[13] ECKEL, B.; ALLISON, C. Thinking in C++, Volume 2: Practical Programming. Prentice Hall, Pearson Education, 2004.
[14] GAMMA, E., HELM R., JOHNSON, R, and VLISSIDES, J. 1995. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Longman Publishing Co. Inc., Boston, MA, USA.
[15] FERREIRA, L. A. et al. Interface Gráfica para Solução de Problemas de Contorno Usando Métodos semMalha. In: 16º SBMO -
Simpósio Brasileiro deMicro-ondas e Optoeletrônica e 11º CBMag - Congresso Brasileiro de Eletromagnetismo (MOMAG 2014).
Curitiba, Brazil:[s.n.], 2014.
[16] FAYAD, M. E.; SCHMIDT, D. C.; JOHNSON, R. E. Building Application Frameworks: Object-oriented Foundations of Framework
Design. New York, NY, USA: JohnWiley & Sons, Inc., 1999. ISBN 0-471-24875-4.
[17] LIMA, N. Z.; MESQUITA, R. C.; JUNIOR, M. L. A. A framework for meshless methods using generic programming. In:
Electromagnetic Field Computation (CEFC), 2010 14th Biennial IEEE Conference on. [S.l.: s.n.], 2010. p. 1–1.
[18] FONSECA, A. R. et al. Imposing Boundary Conditions in the Meshless Local Petrov-GalerkinMethod. IET Science,Measurement &
Technology, v. 2, n. 6, p. 387–394, 2008.
[19] LIMA, N. Z., FONSECA, A. R. and MESQUITA, R. C., “Application of local point interpolation method to electromagnetic problems
with material discontinuities using a new visibility criterion,” Magnetics, IEEE Transactions on, vol. 48, no. 2, pp. 615–618, Feb 2012.

Downloads

Published

2015-08-01

How to Cite

Leonardo Augusto Ferreira, Alexandre Ramos Fonseca, Naísses Zoia Lima, Renato Cardoso Mesquita, & Gabriel Cardoso Salgado. (2015). GRAPHICAL INTERFACE FOR ELECTROMAGNETIC PROBLEM SOLVING USING MESHLESS METHODS. Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 14, SI-54 to SI. Retrieved from http://www.jmoe.org/index.php/jmoe/article/view/490