3D PRINTED HOLLOW CORE FIBER WITH NEGATIVE CURVATURE FOR TERAHERTZ APPLICATIONS

Authors

  • Alice L. S. Cruz
  • Valdir A. Serrão
  • Carmem L. Barbosa
  • Marcos A. R. Franco
  • Cristiano M. B. Cordeiro
  • Alexander Argyros
  • Xiaoli Tang

Keywords:

Hollow core fiber, Terahertz, microstructured fiber, 3D printer

Abstract

In this paper we demonstrate the terahertz propagation in hollow core fiber with negative curvature core, manufactured through rapid prototyping technique using low cost 3D printer. The fiber was numerically and experimentally characterized using finite element software and a terahertz time domain spectrometer (THz-TDS). The results indicate that the fiber guides at least until 1.1 THz, covering spectral range with extremely high loss materials. The guidance is supported by antiresonant effect. The fiber was printed with low resolution 3D printer leading to hollow-core structure with several surface modes.

References

[1] K. E. Peiponen, J. A. Zeitler and M. K. Gonokami, Terahertz Spectroscopy and Imaging, Springer, 2013, pp. 1‒55.
[2] K. Wang and D. M. Mittleman, “Guided Propagation of Terahertz Pulses on Metal Wires,” J. Opt. Soc. Am. B, v. 22,
no. 9, pp. 2001‒2008, Sept. 2005.
[3] A. Argyros, “Microstructures in Polymer Fibres for Optical Fibres, THz Waveguides, and Fibre-Based Metamaterials,”
ISRN Optics, v. 2013, ID 785162, pp. 1‒22, Oct. 2012.
[4] B. Ung, et al., “Polymer Microstructured Optical Fibers for Terahertz Wave Guiding,” Opt. Express, v. 19, no. 26,
pp. B848‒B861, Dec. 2011.
[5] C. M. Smith, et al., “Low-loss Hollow-Core Silica/Air Photonic Bandgap Fibre”, Nature, v. 424, pp. 657‒659,
Aug. 2003.
[6] F. Benabid, “Hollow-core Photonic Bandgap Fibre: New Light Guidance for New Science and Technology,” Phil.
Trans. R. Soc. A, 1‒24, 2006.
[7] A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer Fibers for Low-Loss Terahertz Guiding,” Opt. Express,
v. 16, no. 9, pp. 6340‒6351, Apr. 2008.
[8] H. Bao, et al, “Fabrication and Characterization of Porous-core Honeycomb bandgap THz Fibers,” Opt. Express, v. 20,
no. 28, pp. 29507‒29517, Dec. 2012.
[9] A. L. S. Cruz, A. C. C. Migliano and M. A. R. Franco, “Polymer Optical Fibers for Terahertz: Low Loss Propagation
and High Evanescent Field,” in Intern. Microwave and Optoelectronics Conference, Rio de Janeiro, RJ, 2013, pp.1‒5.
[10] A. L. S. Cruz, “Projeto e modelagem Computacional de Guias de Ondas Dielétricos, Filtros e Sensor refractométrico
para Terahertz,” M.S. thesis, Appl. Phys., ITA, São José dos Campos, SP, 2013.
[11] W. Belardi and J. C. Knight, “Effect of Core Boundary Curvature on the Confinement Losses of Hollow Antiresonant
Fibers,” Opt. Express, v. 21, no. 19, pp. 21912‒21917, Sept. 2013.
[12] A. D. Pryamikov, et al., “Demonstration of a waveguide regime for a silica hollow -core microstructure optical fiber
with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express, v. 19, no. 2, 1441‒1448,
Jan. 2011.
[13] L. Vincetti and V. Setti, “Elliptical Hollow Core Tube Lattice Fibers for Terahertz Applications,” Opt. Fiber Technol.,
v. 19, pp. 31-34, Oct. 2013.
[14] V. Setti, L. Vicentti and A. Argyros, “Bending Loss in Tube Lattice Fibers for Terahertz Applications,” in Inter. Conf.
on Infrared, Millimeter, and Terahertz Waves, Houston, TX, 2012.
[15] N. M. Litchinister, et al., “Antiresonant Reflecting Photonic Crystal Optical Waveguide,” Opt. Lett., v. 27, no. 18,
pp. 1592‒1594, Sept. 2002.
[16] S. F. Busch, M. et al., “Optical Properties of 3D Printable Plastics in the THz Regime and their Application for 3D
Printed THz Optics,” J Infrared Milli Terahz Waves, v.35, pp. 993-997, 2014.
[17]D. S. Wu, A. Argyros, and S. G. Leon-Saval, “Reducing the Size of Hollow Terahertz Waveguides,” J. of Lightwave
Technology, v. 29, no. 1, pp.97-103. Jan. 2011.
[18] P. Rugeland, C. Sterner and W. Margulis, “Visible Light Guidance in Silica Capillaries by Antiresonant Reflection,”
Opt. Express, v. 21, no. 24, pp. 29217‒29222, Dec. 2013.
[19] F. Couny, F. Benabid and P. S. Light, “Large-pitch Kagome-structure Hollow-core Photonic Crystal Fiber,” Opt. Lett.,
v. 31, pp. 24, 3574‒3576, Mar. 2006.
[20] O. T. Weisberg, et al., “Analysis of Mode Structure in Hollow Dielectric Waveguide Fibers,” Phys. Rev. E, v. 67,
pp. 046608, Apr. 2003.
[21] V. Setti, L. Vincetti, and A. Argyros, “Flexible tube lattice fibers for terahertz applications,” Opt. Express, v. 21, no. 3,
pp. 3388-3399, Feb. 2013.
[22] Z. Wu, et al., “Terahertz Electromagnetic Crystal Waveguide Fabricated by Polymer Jetting Rapid Prototyping,” Opt.
Express, v. 19, no. 5, pp. 3962-3972, Feb. 2011.
[23] V. A. Serrão and M. A. R. Franco, “A New Approach to Obtain Single-polarization Hollow-core Photonic Bandgap
Fiber”, in 5th European Workshop on Optical Fibre Sensors, Kraków, Poland, pp. 19-22, 2013.
[24] A. L. S. Cruz, et al., “Fibra de núcleo oco com curvatura negativa para aplicações em Terahertz,” in MOMAG 2014,
Curitiba, PR, 2014.
[25] Y. H. Lo and R. Leonhardt, “Aspheric lenses for terahertz imaging,” Opt. Express, v. 20, no. 20, pp. 15991-15998,
Sept. 2008.
[26] Y. Jin, G. Kim and S. Jeon, “Terahertz dielectric properties of polymers,” J. of the Korean Physical Society, v. 49, no.
2, pp. 513-517, Aug. 2006.
[27] Application Note - "Thermal Analysis", Perkin Elmer (www.perkinelmer.com).

Downloads

Published

2015-08-01

How to Cite

Alice L. S. Cruz, Valdir A. Serrão, Carmem L. Barbosa, Marcos A. R. Franco, Cristiano M. B. Cordeiro, Alexander Argyros, & Xiaoli Tang. (2015). 3D PRINTED HOLLOW CORE FIBER WITH NEGATIVE CURVATURE FOR TERAHERTZ APPLICATIONS. Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 14, SI–45 to SI. Retrieved from http://www.jmoe.org/index.php/jmoe/article/view/489