MODIFIED RAIN ATTENUATION PREDICTION METHOD CONSIDERING THE EFFECT OF WIND DIRECTION

Authors

  • L. da Silva Mello
  • M. S. Pontes
  • I. Fagundes
  • M. P. C. Almeida
  • F. J. A. Andrade

DOI:

https://doi.org/10.1590/2179-10742014v13i2413

Keywords:

Rain attenuation, radio propagation, propagation measurements.

Abstract

The method currently recommended by the ITU-R for the prediction of rain attenuation in terrestrial line-of sight links considers an equivalent path length over which the rain intensity is assumed to be constant. In other methods, the spatial and temporal variations of the rainfall rate along the path are characterized by an effective rainfall rate that is dependent on the actual path length. Based on experimental measurements, this paper presents a modified effective rainfall rate method that includes the prevailing wind direction during rainy conditions as an additional parameter for the prediction of rain attenuation. The wind direction, which can be obtained from meteorological databases with global coverage, is shown to significantly improve prediction accuracy

References

[1] Oguchi, T., Attenuation of electromagnetic wave due to rain with distorted raindrops, J. Radio Res. Labs. (Japan), 33(7), 467–485,
1960.
[2] Oguchi, T., Attenuation of electromagnetic wave due to rain with distorted raindrops (Part II), J. Radio Res. Labs. (Japan), 11, 19-44,
1964.
[3] Drufuca, G., Rain attenuation statistics for frequencies above 10 GHz from rain gauge observations, Journal Recherches
Atmospheriques, vol 1-2, pp. 399-411, 1974.
[4] Olsen, R., D. Rogers, and D. Hodge, The aRb
relation in the calculation of rain attenuation, IEEE Trans. Ant. Prop., 26(2), 318-329,
1978.
[5] Pruppacher, H. R., and R. L. Pitter, A semi-empirical determination of the shape of cloud and rain drops, J. Atmos. Sci., 28(1), 86–94,
1971.
[6] Oguchi, T., Scattering properties of Pruppacher-and-Pitter form raindrops and cross-polarization due to rain: calculations at 11,13, 19-
3 and 34-8 GHz, Radio Sci., 12, 41-51, 1977.
[7] ITU-R Recommendation P.838-3, 2005, Specific attenuation model for rain for use in prediction methods, International
Telecommunication Union, http://www.itu.int/rec/R-REC-P.838/en.
[8] Gibbins, C. J., and C. J. Walden, A study into the derivation of improved rain attenuation regression coefficients,
Radiocommunications Agency Report No. AY4359, 2003, http://www.radio.gov.uk/topics/research/research-index.htm.
[9] Capsoni, C., and M. D'Amico, Morphological description of the rain structures in the Padana Valley, Proceedings of the Third
European Conference on Radar Meteorology (ERAD), 541-544, 2004.
[10] Steiner, M. and R.A. Houze Jr., Sensitivity of estimated monthly convective rain fraction to the choice of Z-R relation, J Appl.
Meteor., 36, 452-462, 1997.
[11] Capsoni C., L. Luini, A. Paraboni and C. Riva, Stratiform and convective rain discrimination deduced from local P(R), IEEE Trans.
Ant. Prop., 54(11), 3566-3569, 2006.
[12] Houze, R.A., Stratiform precipitation in regions of convection, Bull. Amer. Meteor. Soc., 78, 2179-95, 1997Matricciani E., Physicalmathematical model of the dynamics of rain attenuation based on rain rate time series and a two-layer vertical structure of
precipitation, Radio Science, vol. 31, no. 2, pp. 281-296, 1996.
[13] Matricciani E. (2008), Global formulation of the Synthetic Storm Technique to calculate rain attenuation only from rain rate
probability distributions, IEEE Antennas and Propagation Society International Symposium, 1-4, 2008, doi:
10.1109/APS.2008.4619006.
[14] Maseng, T., and P. M. Bakken (1981), A Stochastic Dynamic Model of Rain Attenuation, IEEE Trans. Com., 29(5), 660-669, 1981.
[15] Lacoste, F., M. Bousquet, L. Castanet, F. Cornet, and J. Lemorton, Improvement of the ONERA-CNES rain attenuation time series
synthesizer and validation of the dynamic characteristics of the generated fade events, Space Comm. Journal, 20(1-2), 45-59, 2005.
[16] Andrade, F. J. A., and Da Silva Mello, L., Rain Attenuation Time Series Synthesizer Based on the Gamma Distribution, IEEE Ant.
Wireless Prop. Letters, 10, 1381-1384, 2011.
[17] Misme, P., and J. Fimbel, Theoretical and experimental determination of rain-induced attenuation on a radioelectric path, Ann. Téléc.,
30, 149-158, 1975.
[18] Capsoni, C., F. Fedi, C. Magistroni, A. Paraboni, and A. Pawlina, Data and theory for a new model of the horizontal structure of rain
cells for propagation applications, Radio Sci., 2293), 395-404, 1987.
[19] Paraboni, A., G. Masini, and A. Elia, The Effect of Precipitation on Microwave LMDS Networks – Performance Analysis using a
Physical Raincell Model, IEEE J. on Selected Areas in Commun., 20(3), 615-619, 2002.
[20] Lin, S. H., A method for calculating rain attenuation distributions on microwave paths, Bell Syst. Tech. J., 1051-1086, 1975.
[21] Garcia Lopez, J.A., and J. Peiro, Simple rain attenuation prediction technique for terrestrial radio links, Elect. Letters, 19, 879-881,
1983.
[22] Moupfouma, F., Improvement of a rain attenuation prediction method for terrestrial microwave links, IEEE Trans. Ant. Prop., 32,
1368-1372, 1984.
[23] ITU-R Recommendation P.530-15, 2013, Propagation data and prediction methods required for the design of terrestrial line-of-sight
systems, International Telecommunication Union, http://www.itu.int/rec/R-REC-P.530/en.
[24] Crane, R. K., Prediction of attenuation by rain, IEEE Trans. Commun., 28, 1717-1733, 1980.
[25] Da Silva Mello, L., M. S. Pontes, R. M. de Souza and N. A. Pérez Garcia, Prediction of rain attenuation in terrestrial links using the
full rainfall rate distribution, Elec. Letters, 43, 1442-1443, 2007.
[26] Da Silva Mello, Luiz and M. S. Pontes, Unified Method for the Prediction of Rain Attenuation in Satellite and Terrestrial Links, J.
Micr. Optoelec. Elect. Appl., 11, 1-14, 2012.
[27] ITU-R Databank DBSG3, 2014, http://www.itu.int/pub/R-SOFT-SG3/en.
[28] ITU-R Recommendation P.837-6, 2012, Characteristics of precipitation for propagation modeling, International Telecommunication
Union, http://www.itu.int/rec/R-REC-P.837/en.
[29] Silva Mello, L. A. R, E. P. O. Costa, R. S. L. Souza, Rain attenuation measurements at 15 and 18 GHz, Electronics Letters, 40(11),
683-684, 2004.
[30] Draper, N. R., Smith, H. (1998). Applied Regression Analysis. Wiley-Interscience. ISBN 0-471-17082-8.
[31] ECMWF (2013), ERA-40, http://www.ecmwf.int/products/data/archive/descriptions/e4/.
[32] ITU-R Recommendation P.311-12, 2006, Acquisition, presentation and analysis of data in studies of tropospheric propagation,
International Telecommunication Union, http://www.itu.int/rec/R-REC-P.311/en.

Downloads

Published

2014-08-01

How to Cite

L. da Silva Mello, M. S. Pontes, I. Fagundes, M. P. C. Almeida, & F. J. A. Andrade. (2014). MODIFIED RAIN ATTENUATION PREDICTION METHOD CONSIDERING THE EFFECT OF WIND DIRECTION. Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 13(2), 254–267. https://doi.org/10.1590/2179-10742014v13i2413

Issue

Section

Regular Papers