• Yujuan Wang
  • Lucas H. Negri
  • Hypolito J. Kalinowski
  • Daniel S. Mattos
  • Gabriel H. Negri
  • Aleksander S. Paterno




FBG, Field Programmable Gate Array, Fiber Sensors Interrogation, Peak detection


The description of an interrogation system for fiber Bragg grating sensors is reported. The full implementation in hardware of the required signal processing is proposed and made publicly available. The hardware description is implemented in a field programmable gate array (FPGA) development kit and the processing units allow one to control an optoelectronic interrogation system that uses the tunable filter method. Since the signal that drives the used Fabry-Perot filter (FFP) using a digital-to-analog converter (DAC) requires the generation of a triangular/saw-tooth waveform, the non-linear behavior of the DAC is compensated with a new methodology in this application using FPGA. When it operates controlled by a personal computer, off-board additional adaptive signal processing is used to suppress optical interference in an innovative way while removing undesired distortions in the signals caused by reflections in the optical circuit.


[1] G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic
method,” Optics Letters, vol. 14, no. 15, pp. 823–825, Aug 1989. [Online]. Available:
[2] J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser and Photonics Reviews, vol. 2, no. 4, pp. 275–
289, 2008. [Online]. Available: http://dx.doi.org/10.1002/lpor.200810010
[3] W. W. Morey, J. R. Dunphy, and G. Meltz, “Multiplexing fiber Bragg grating sensors,” Fiber and Integrated Optics,
vol. 10, no. 4, pp. 351–360, 1991. [Online]. Available:
[4] A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing.
Artech House, 1999.
[5] K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to
reflection filter fabrication,” Applied Physics Letters, vol. 32, no. 10, pp. 647–649, 1978. [Online]. Available:
[6] A. D. Kersey, T. A. Berkoff, and W. W. Morey, “Fiber-optic Bragg grating strain sensor with drift-compensated
highresolution interferometric wavelength-shift detection,” Optics Letters., vol. 18, no. 1, pp. 72–74, Jan 1993.
[Online]. Available: http://ol.osa.org/abstract.cfm?URI=ol-18-1-72
[7] K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Measurement
Science and Technology, vol. 12, no. 7, pp. 757–764, Jul. 2001. [Online]. Available: http://iopscience.iop.org/0957-
0233/12/7/301 http://stacks.iop.org/0957-0233/12/i=7/a=301?key=crossref.f2660896ce285faccb053134e10b74ef
[8] A. D. Kersey, T. A. Berkoff, and W. W. Morey, “Multiplexed fiber Bragg grating strain-sensor system with a fiber
Fabry - Perot wavelength filter,” Optics Letters., vol. 18, no. 16, p. 1370, Aug. 1993. [Online].
[9] L. Zhang, Y. Liu, J. Williams, and I. Bennion, “Enhanced FBG strain sensing multiplexing capacity using combination
of intensity and wavelength dual-coding technique,” IEEE Photonics Technology Letters, vol. 11, no. 12, pp. 1638 –
1640, dec. 1999.
[10] C. Shi, C. Chan, W. Jin, Y. Liao, Y. Zhou, and M. Demokan, “Improving the performance of a FBG sensor network
using a genetic algorithm,” Sensors and Actuators A: Physical, vol. 107, no. 1, pp. 57 – 61, 2003. [Online]. Available:
[11] W. R. Allan, Z. W. Graham, J. R. Zayas, D. P. Roach, and D. A. Horsley, “Multiplexed Fiber Bragg Grating
Interrogation System Using a Microelectromechanical Fabry-Perot Tunable Filter,” IEEE Sensors Journal, vol. 9, no. 8,
pp. 936–943, Aug. 2009. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5153585
[12] S. Schultz, W. Kunzler, Z. Zhu, M. Wirthlin, R. Selfridge, A. Propst, M. Zikry, and K. Peters, “Full-spectrum
interrogation of fiber Bragg grating sensors for dynamic measurements in composite laminates,” Smart Materials and
Structures, vol. 18, no. 11, p. 115015, Nov. 2009. [Online]. Available: http://stacks.iop.org/0964-
[13] Z. Zhou, Q. Liu, Q. Ai, and C. Xu, “Intelligent monitoring and diagnosis for modern mechanical equipment based on
the integration of embedded technology and FBGS technology,” Measurement, vol. 44, no. 9, pp. 1499–1511, Nov.
2011. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0263224111001746
[14] “VFBI - VHDL FBG interrogation,” http://sourceforge.net/p/vhdloptical.
[15] G. R. C. Possetti, R. C. Kamikawachi, M. Muller, and J. L. Fabris, “Metrological Evaluation of Optical Fiber GratingBased Sensors: An Approach Towards the Standardization,” Journal of Lightwave Technology, vol. 30, no. 8, pp.
1042–1052, Apr. 2012. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6015513
[16] P. P. Chu, FPGA Prototyping By VHDL Examples. John Wiley and Sons, 2008.
[17] L. H. Negri, A. Nied, H. Kalinowski, and A. S. Paterno, “Benchmark for Peak Detection Algorithms in Fiber Bragg
Grating Interrogation and a New Neural Network for its Performance Improvement,” Sensors, vol. 11, no. 4, pp. 3466–
3482, Mar. 2011. [Online]. Available: http://www.mdpi.com/1424-8220/11/4/3466/
[18] C. C. Chan, W. Jin, and M. Demokan, “Enhancement of measurement accuracy in fiber Bragg grating sensors by using
digital signal processing,” Optics & Laser Technology, vol. 31, no. 4, pp. 299 – 307, 1999. [Online]. Available:
[19] A. S. Paterno, J. C. C. Silva, M. S. Milczewski, L. V. R. Arruda, and H. J. Kalinowski, “Radial-basis function network
for the approximation of FBG sensor spectra with distorted peaks,” Measurement Science and Technology, vol. 17, no.
5, pp. 1039–1045, May 2006. [Online]. Available: http://stacks.iop.org/0957-
[20] J. G. Proakis and D. K. Manolakis, Digital Signal Processing, 4th ed. Prentice Hall, Apr. 2006.
[21] R. Woods, J. Mcallister, R. Turner, Y. Yi, and G. Lightbody, FPGA-based Implementation of Signal Processing
Systems, Wiley Publishing, 2008.
[22] C-Band Wavelength Calibrator Acetylene Gas Cell – Datasheet C2H2-12-H(5.5)-200-FCPC, Wavelength References,
[23] I. Roberto, L. H. De-Figueiredo, and W. Celes-Filho. "Lua - An extensible extension language." Software: Practice &
Experience, vol 26, no. 6, pp 635–652, 1996.




How to Cite

Yujuan Wang, Lucas H. Negri, Hypolito J. Kalinowski, Daniel S. Mattos, Gabriel H. Negri, & Aleksander S. Paterno. (2014). HARDWARE EMBEDDED FIBER SENSOR INTERROGATION SYSTEM USING INTENSIVE DIGITAL SIGNAL PROCESSING. Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 13(2), 139–153. https://doi.org/10.1590/2179-10742014v13i2393



Regular Papers

Most read articles by the same author(s)