• Ismael Chiamenti
  • Francesca Bonfigli
  • Rosa Maria Montereali
  • Hypolito J. Kalinowski




Refractive Index Increase, Core Dimension, Optical Waveguide, Lithium Fluoride, Femtosecond Laser


A recursive procedure is applied to the measured near-field profiles of buried optical waveguides recorded in a lithium fluoride (LiF) crystal by femtosecond laser pulses in order to estimate the core dimensions and the refractive index increase. Albeit the waveguides transversal section geometry is quite complex it is possible to obtain the horizontal and vertical widths and the average refractive index maximum increase assuming a simplified rectangular transversal section in the simulation.  The procedure is validated by comparing the simulated results with the experimental near-field profiles and the maximum refractive index values of two commercial optical fibers. Typical dimensions of ~(8x10)µm2 and refractive index changes of ~(2-10)x10-4 were obtained for the LiF waveguides at several wavelengths.


[1] K. OKAMOTO, Fundamentals of Optical Waveguides. 2 ed. Amsterdam: Elsevier Inc., 2006.
[2] G. E. AIZENBERG, P. L. SWART and B. M. LACQUET, “A Digital Signal-Processing Analysis Technique for The
Infrared Reflectivity Characterization of Ion-Implanted Silicon” Journal of Electronic Materials, vol. 21, pp. 1033-
1040, 1992
[3] T. OKOSHI, Optical Fibers, First, Ed. Academic Press Inc., 1982.
[4] C. J. ALLEYNE, et al. “Numerical method for high accuracy index of refraction estimation for spectro-angular surface
plasmon resonance systems” Optics Express, vol. 16, pp. 19493-19503, 2008.
[5] X. H. LIU, et al. “Optical properties of a single mode planar waveguide in Nd:YVO4 fabricated by multienergy He ion
implantation” Applied Optics, vol. 50, pp. 3865-3870, 2011.
[6] P. J. CHANDLER, F. L. LAMA, "A new approach to the determination of planar waveguide profiles by means of a non
stationary mode index calculation," Optica Acta, vol. 33, pp. 127-143, 1986.
[7] A. CHIASERA, et al. “CO2 Laser irradiation of GeO2 planar waveguide fabricated by rf-sputtering” Optical Materials
Express, vol. 3, pp. 1561-1570, 2013.
[8] M. L. BIBRA, A. ROBERTS, "Refractive Index Reconstruction of Graded-Index Buried Channel Waveguides from
Their Mode Intensities," Journal of Lightwave Technology, vol. 15, pp. 1695-1699, 1997.
[9] S. Y. XU, et al “Refractive Index Profile in Photorefractive-Damage-Resistant Near-Stoichiometric Ti:Mg:Er:LiNbO3
Strip Waveguide” IEEE Photonics Journal, vol. 4, pp. 1823 – 1830, 2012.
[10] W. S. TSAI, S. C. PIAO, P. K. WEI, "Refractive index measurement of optical waveguides using modified end-fire
coupling method," Optics Letters, vol. 36, pp. 2008-2010, 2011.
[11] K. M. DAVIS, et al. "Writing waveguides in glass with a femtosecond laser.," Optics Letters, vol. 21, no. 21, pp. 1729-
1731, 1996.
[12] H. ZHANG, S. M. EATON, and P. R. HERMAN, "Single-step writing of Bragg grating waveguides in fused silica with
an externally modulated femtosecond fiber laser," Optics Letters, vol. 32, no. 17, pp. 2559-2561, 2007.
[13] R. OSELLAME, et al. "Optical waveguide writing with a diode-pumped femtosecond oscillator," Optics Letters, vol.
29, pp. 1900-1903, 2004.
[14] G. BROWN, et al. "Ultrafast laser inscription of Bragg-grating waveguides using the multiscan technique," Optics
Letters, vol. 37, pp. 491-493, 2012.
[15] I. CHIAMENTI, et al. “ Broadband Optical Active Waveguides Written by Femtosecond Laser Pulses in Lithium
Fluoride” Chinese Physics Letters, vol. 31, pp. 014201-014201-4, 2014.
[16] I. CHIAMENTI, et al. “Optical characterization of femtosecond laser induced active channel waveguides in lithium
fluoride crystals” Journal of Applied Physics, vol. 115, pp. 023108 - 023108-7, 2014.
[17] M. ADAMS, Introduction to Optical Waveguide. John Wiley \& Sons Ltd., 1981.
[18] E. D. PALIK, Handbook of Optical Constants of Solids. Academic Press, New York, 1985.




How to Cite

Ismael Chiamenti, Francesca Bonfigli, Rosa Maria Montereali, & Hypolito J. Kalinowski. (2014). DIMENSIONS AND REFRACTIVE INDEX ESTIMATES OF DEEPLY BURIED OPTICAL WAVEGUIDES IN LITHIUM FLUORIDE. Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 13(1), 47–54. https://doi.org/10.1590/S2179-10742014000100004



Regular Papers

Most read articles by the same author(s)