A NEW MULTILEVEL SMOOTHING METHOD FOR WAVELET-BASED ALGEBRAIC MULTIGRID POISSON PROBLEM SOLVER

Authors

  • Fabio Henrique Pereira
  • Kleber Rogério Moreira Prado
  • Silvio Ikuyo Nabeta

DOI:

https://doi.org/10.1590/S2179-10742011000200008

Keywords:

Algebraic Multigrid, Gauss-Seidel Method, Multilevel Smoothe, Poisson Problem, Projection Technique, Smoothing Method

Abstract

In contrast to the standard algebraic multigrid, the Wavelet-based Algebraic Multigrid method relies more strongly on the smoothing method because the coarse spaces are chosen a priori. So, it is very important to develop new smoother methods, especially for those cases where the classical Gauss-Seidel smoothing method does not give good results. This paper proposes a new multilevel smoothing approach based on projection technique. The proposed smoothing method was applied to smoothing the error in a linear systems issued from finite element solutions of the elliptic equation and the results compared with those obtained from the Gauss-Seidel method.

References

[1] W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial, second ed., SIAM, California, 2000.
[2] Q. Chang, Y. S. Wong, and H. Fu, “On the algebraic multigrid method”, J. Comput. Phys. 125:279–292, 1996.
[3] G. Haase, M. Kuhn, and S. Reitzinger, “Parallel Algebraic Multigrid Methods on Distributed Memory Computers”,
SIAM J. Sci. Comput., 24:410-427, 2002.
[4] V. E. Henson, and U. M. Yang, “BoomerAMG: a Parallel Algebraic Multigrid Solver and Preconditioner”, Appl. Num.
Math., 41(1):155−177, 2002.
[5] T. Mifune, T. Iwashita, and M. Shimasaki, “New algebraic multigrid preconditioning for iterative solvers in
electromagnetic finite edge-element analyses,” IEEE Trans. Magn., 39(3):677–1680, 2003.
[6] B. Engquist and E. Luo, “Convergence of a multigrid method for elliptic equations with highly oscillatory
coefficients”, SIAM J. on Numerical Analysis, 34:2254–2273, 1997.
[7] W. L. Wan, “Interface preserving coarsening multigrid for elliptic problems with highly discontinuous coefficients”,
Numerical Linear Algebra with Applications, 7(8):727–742, 2000.
[8] Y. Xiao, P. Zhang and S. Shu, “Algebraic multigrid methods for elastic structures with highly discontinuous
coefficients”, Mathematics and Computers in Simulation, 76(4):249-262, 2007.
[9] W. L. Briggs and V. E. Henson, “Wavelets and multigrid”, SIAM J. Sci. Comput. 14:506–510, 1993.
[10] B. Engquist and E. Luo, “The multigrid method based on a wavelet transformation and Schur complement”,
Unpublished.
[11] A. Rieder, “Multilevel methods based on wavelet decomposition”, East-West J. Numer. Math., 2(4):313-330, 1994.
[12] D. De Leon, Wavelet Operators Applied to Multigrid Methods (Ph.D. Thesis), UCLA Mathematics Department CAM
Report 00-22, June 2000.
[13] D. De Leon, “A new wavelet multigrid method”, J. Comput. Appl. Math., 220:674-685, 2008.
[14] D. De Leon, “A Wavelet Multigrid Method Applied to the Stokes and Incompressible Navier-Stokes Problems”,
Journal of Mathematical Sciences: Advances and Applications, 1(3):601-622, 2008.
[15] A. Avudainayagam, and C. Vani, “Wavelet based multigrid methods for linear and nonlinear elliptic partial differential
equations”, Appl. Math. Comput. 148:307–320, 2004.
[16] F. H. Pereira, S. L. L. Verardi, S. I. Nabeta, “A Wavelet-based Algebraic Multigrid preconditioner for sparse linear
systems”, Appl. Math. Comput., 182:1098-1107, 2006.
[17] V. M. Garcıa, L. Acevedo, and A. M. Vidal, “Variants of algebraic wavelet-based multigrid methods: Application to
shifted linear systems,” Appl. Math. Comput., 202(1): 287–299, 2008.
[18] F. H. Pereira, et. al., “A Wavelet-based Algebraic Multigrid Preconditioning for Iterative Solvers in Finite Element
Analysis”. IEEE Trans. on Magn., 43(4): 1553-1556, 2007.
[19] F. H. Pereira, M. F. Palin, S. L. L. Verardi, S. I. Nabeta, “A Parallel Wavelet-based Algebraic Multigrid black-box
Solver and Preconditioner”, 16th Compumag - Conference on the Computation of Electromagnetic Fields, 2007,
Aachen.
[20] F. H. Pereira, S. I. Nabeta, “Wavelet-Based Algebraic Multigrid Method Using the Lifting Technique”, J. of
Microwaves, Optoelectronics and Electromagnetic Applications, 9(1): 1-9, 2010.
[21] U. Trottenberg, C. W. Oosterlee, and A. Schuller, Multigrid, Academic Press, New York, 2001, pp. 45-56.
[22] S. Zeng and P. Wesseling, “Numerical Stydy of a Multigrid Method with Four Smoothing Methods for the
Incompressible Navier-Stokes Equations in General Coordinates”. In N. D. Melson,Th. A. Manteuffel, and S. F.
McCormick, editors, Sixth Copper Mountain Conference on Multigrid Methods, 691-708. NASA Langley Research
Center, 1993.
[23] J. Blazek, C.-C. Rossow, N. Kroll and R.C. Swanson, “A comparison of several implicit residual smoothing methods in
combination with multigrid”. Lecture Notes in Physics, 414:386-390, 1993.
[24] [24] M. F. Adams, M. Brezina, J. J. Hu, and R. S. Tuminaro, “Parallel multigrid smoothing: Polynomial versus GaussSeidel”. J. Comput. Phys., 188:593–610, 2003.
[25] K. Watanabe, S. Fujino, H. Igarashi, “Multigrid Method With Adaptive IDR-Based Jacobi Smoother”, IEEE Trans. on
Magn., 47(5):1210-1213, 2011.
[26] F. H. Pereira, A. C. M. Junqueira, R. Perrussel, S. I. Nabeta, “An investigation of the requirements over smoother
methods in Wavelet-based Algebraic Multigrid”. In: 13th Biennial IEEE Conference on Electromagnetic Field
Computation, Athens, 13:1-4, 2008.
[27] F. H. Pereira, S. I. Nabeta, “A New Multilevel Smoothing Method for the Wavelet-Based Algebraic Multigrid.” In:
17th Conference on the Computation of Electromagnetic Fields, Florianópolis, 2009.
[28] D. Pusch, Efficient Algebraic Multigrid Preconditioners for Boundary Element Matrices, Phd thesis. Johannes Kepler
University Linz, Austria, 1997.
[29] F. H. Pereira, M. M. Afonso, J. A. Vasconcelos, and S. I. Nabeta, “An Efficient Two-Level Preconditioner based on
Lifting for FEM-BEM Equations”, J. of Microwaves, Optoelectronics and Electromagnetic Applications, 9(2):78-88,
2010.
[30] A. Jensen, A. la Cour-Harbo, The Discrete Wavelet Transform, Ripples in Mathematics, Springer, Berlin, 2001.
[31] T. K. Sarkar, M. Salazar-Palma, C. W. Michael, Wavelet Applications in Engineering Electromagnetics, Artech House,
Boston, 2002.
[32] Y. Saad, Iterative Methods for Sparse Linear Systems, 2
nd ed, SIAM, Philadelphia, 2003.
[33] O. Axelsson, Iterative solution methods, Cambridge University Press, New York, NY, 1995.

Downloads

Published

2011-08-01

How to Cite

Fabio Henrique Pereira, Kleber Rogério Moreira Prado, & Silvio Ikuyo Nabeta. (2011). A NEW MULTILEVEL SMOOTHING METHOD FOR WAVELET-BASED ALGEBRAIC MULTIGRID POISSON PROBLEM SOLVER. Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 10(2), 379–388. https://doi.org/10.1590/S2179-10742011000200008

Issue

Section

Regular Papers