• Sonia M. Holik
  • Timothy D. Drysdale



Effective medium theory, interconnects, spiral inductor


We demonstrate the feasibility of using effective medium theory to reduce the computational complexity of full-wave models of inductors that are placed over interconnects. Placing inductors over interconnects is one way that designers can tackle the problem of reducing overall chip size, however this has heretofore been a difficult option to evaluate because of the prohibitive memory requirements and run times for detailed simulations of the inductor. Here we replace the interconnects with a homogeneous equivalent layer that mimics their impact on the inductor to within 2% error, but reducing runtime and memory use by 90% or more.


F. Zhang, and P. R. Kinget, "Design of components and circuits underneath integrated inductors,`` IEEE J. Solid-State Circuits , vol. 41, no. 10, pp. 2265-2271, 2006.

J. H. Chang, Y. S. Youn, H. K. Yu, and C. K. Kim, "Effects of dummy patterns and substrate on spiral inductors for sub-micron RF ICs,`` IEEE Radio Frequency Integrated Circuits Symposium, Digest of Technical Papers, pp. 419-422, 2002.

C. L. Chen, "Effects of CMOS process fill patterns on spiral inductors,`` Microwave and Optical Technology Letters, vol. 36, no. 6, pp. 462-465, 2003.

H. M. Hsu, and M. M. Hsieh, "On-chip inductor above dummy metal patterns,`` Solid State Electronics, vol. 52, pp. 998-1001, 2008.

K. Murata, T. Hosaka, and Y. Sugimato, "Effect of a ground shield of a silicon on-chip spiral inductor,`` Proc. IEEE Microwave Conference, pp. 177-180, 2000.

C. P. Yue, and S. S. Wong, "Design strategy of on-chip inductors for highly integrated RF systems,`` Proc. IEEE Design Automation Conference, pp. 982-987, 1999.

J. Chen, and J. J. Liou, "On-chip spiral inductors for RF applications: an overview,`` J. Semiconductor Tech. Science, vol. 4, no. 3, pp. 149-167, 2004.

X. Sun, G. Carchon, Y. Kita, K. Chiba, T. Tani, and W. De Raedt, "Experimental analysis of above-IC inductor performance with different patterned ground shield configurations and dummy metals``, Proc. 36th UMC'06, pp. 40-43, 2006.

S. M. Holik, and T.D. Drysdale, ``Simplified model of a layer of interconnects under a spiral inductor``, accepted for publication in Journal of Electromagnetic Analysis and Applications.

J. Choi, M. Swaminathan, B. Beker, and R. Master, "Modeling of realistic on-chip power grid using FDTD method,`` Proc. IEEE Int. Sym. Electromagnetic Compatibility, vol. 1, pp. 238-243, 2001.

A. Fontanelli, "System-in-package technology: opportunities and challenges,`` Proc. IEEE Int. Sym. Quality Electronic Design, pp. 589-593, 2008.

S. M. Holik, and T. D. Drysdale, "Simplified model for on-chip interconnects in electromagnetic modeling of systemin- package,`` Proc. 12th ICEAA'10, pp. 541-544, 2010.

S. M. Holik, and T. D. Drysdale, "Effective medium approximation for electromagnetic compatibility analysis of integrated circuits,`` Proc.2nd ICAEMMO'08, pp. 413-415, 2008.

S. M. Holik, T. D. Drysdale 'Simplified model of a layer of interconnects under a spiral inductor,' J. Electromagnetic Analysis and Applications, vol. 3, no. 6, pp. 187-190, 2011.

Ansoft High Frequency Structure Simulator (HFSS).

M. Park, S. Lee, C. S. Kim, H. K. Yu, and K. S. Nam, "The detailed analysis of high Q CIMOS-compatible microwave spiral inductors in silicon technology,`` IEEE Trans. Electron Devices, vol. 45, no. 9, pp. 1953-1959, 1998.

M. Park, G. H. Kim, J. Jang, J. G. Koo, and K. S. Nam, "Planarised interconnection technology using a new pillar formation method with multistacked metal structure,`` Electron. Lett., vol. 32, no. 18, pp. 1731-1732, 1996.

A. Sihvola, , "Electromagnetic mixing formulas and applications,`` IEE Publishing, London, 1999.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic masostructures,`` Phisical Review Lett., vol. 76, no. 25, pp. 4773 – 4776, 1996.




How to Cite

Sonia M. Holik, & Timothy D. Drysdale. (2011). SIMPLIFIED MODEL OF INTERCONNECT LAYERS UNDER A SPIRAL INDUCTOR. Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 10(2), 337–342.



Regular Papers