NUMERICAL TREATMENT OF ROUNDED AND SHARP CORNERS IN THE MODELING OF 2D ELECTROSTATIC FIELDS

Authors

  • L. Krähenbühl
  • F. Buret
  • R. Perrusse
  • D. Voyer
  • P. Dular
  • V. Péron
  • C. Poignard

DOI:

https://doi.org/10.1590/S2179-10742011000100008

Keywords:

Finite element method, geometric singularity, asymptotic expansion, rounded corner

Abstract

This work deals with numerical techniques to compute electrostatic fields in devices with rounded corners in 2D situations. The approach leads to the solution of two problems: one on the device where rounded corners are replaced by sharp corners and the other on an unbounded domain representing the shape of the rounded corner after an appropriate rescaling. Both problems are solved using different techniques and numerical results are provided to assess the efficiency and the accuracy of the techniques.

References

[1] H. Timouyas, “Analyse et analyse numérique des singularités en électromagnétisme,” Ph.D. dissertation,
Ecole Centrale de Lyon, 2003. [Online]. Available: http://tel.archives-ouvertes.fr/tel-00110828.
[2] M. Dauge, S. Tordeux, and G. Vial, Around the Research of Vladimir Maz’ya II: Partial Differential Equations.
Springer Verlag, 2010, ch. Selfsimilar Perturbation near a Corner: Matching Versus Multiscale Expansions
for a Model Problem, pp. 95–134.
[3] L. Krähenbühl, H. Timouyas, M. Moussaoui, and F. Buret, “Coins et arrondis en éléments finis - Une approche
mathématique des coins et arrondis pour les solutions par éléments finis de l’équation de Laplace,” RIGE,
vol. 8, pp. 35–45, 2005.
[4] S. Tordeux, G. Vial, and M. Dauge, “Matching and multiscale expansions for a model singular perturbation
problem,” Comptes Rendus Mathematique, vol. 343, no. 10, pp. 637–642, Nov. 2006.
[5] P. Grisvard, Elliptic problems in nonsmooth domains. Pitman Advanced Pub. Program, 1985.
[6] F. Henrotte, B. Meys, H. Hedia, P. Dular, and W. Legros, “Finite element modelling with transformation
techniques,” Magnetics, IEEE Transactions on, vol. 35, no. 3, pp. 1434–1437, 1999.
[7] Wikipedia. Conformal map. [Online]. Available: http://en.wikipedia.org/wiki/Conformal_map
[8] E. Durand, Electrostatique, Vol. 2 : Problèmes généraux conducteurs. Editions Masson, Paris, 1964-1966.
[9] C. Geuzaine, B. Meys, F. Henrotte, P. Dular, and W. Legros, “A Galerkin projection method for mixed finite
elements,” Magnetics, IEEE Transactions on, vol. 35, no. 3, pp. 1438–1441, 1999

Published

2011-08-01

How to Cite

L. Krähenbühl, F. Buret, R. Perrusse, D. Voyer, P. Dular, V. Péron, & C. Poignard. (2011). NUMERICAL TREATMENT OF ROUNDED AND SHARP CORNERS IN THE MODELING OF 2D ELECTROSTATIC FIELDS. Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 10(1), 66-81. https://doi.org/10.1590/S2179-10742011000100008

Issue

Section

Regular Papers