MINOR LOOPS CALCULATION WITH A MODIFIED JILES-ATHERTON HYSTERESIS MODEL
Keywords:
Hysteresis models, magnetic materials, minor loopsAbstract
This work proposes a modification in the Jiles-Atherton hysteresis model in order to improve the minor loops representation. The irreversible magnetization component is slightly modified keeping unchanged the other model equations and the model simplicity. Differently to other proposed methodologies found in the literature, the previously knowledge of the magnetic field waveform is not need to assure closed minor loops. Measured and calculated hysteresis curves are used in order to validate the methodology.
References
[1] P. J. Leonard, P. Marketos, A. J. Moses and M. Lu, “Iron losses under PWM excitation using dynamic hysteresis model
and Finite Elements”, IEEE Trans. on Magn., 42(4), pp. 907-910, 2006.
[2] S. E. Zirka, Y. I. Moroz and E. D. Torre, “Combination hysteresis model for accommodation magnetization”, IEEE
Trans. on Magn., 41(9), pp. 2426-2431, 2005.
[3] F. Preisach, “Über die magnetische Nachwirkung”, Zeitschrift für Physik, 94, pp. 277-302, 1935.
[4] A. Benabou, S. Clénet and F. Piriou, "Comparison of the Preisach and Jiles-Atherton models to take hysteresis
phenomenon into account in Finite Element Analysis", COMPEL, 23(3), pp. 825-834, 2004.
[5] D. C. Jiles and D .L. Atherton, “Theory of ferromagnetic hysteresis,” J. Magn. Magn. Mater., vol. 61, pp. 48–60,1986.
[6] D. C. Jiles, “A self consistent generalized model for the calculation of minor loops excursions in the theory of
hysteresis. IEEE Trans. Magn. v. 28, n. 5, p. 2602 - 2604, 1992.
[7] K. H. Carpenter, “A differential equation approach to minor loops in the Jiles–Atherton hysteresis model,” IEEE Trans.
on Magn., v. 27, n° 6, pp. 4404-4406 (1991).
[8] D. Lederer, H. Igarashi, A. Kost and T. Honma. “On the parameter identification and application of the Jiles-Atherton
hysteresis model for numerical modelling of measured characteristics”, IEEE Trans. Magn. vol.35, 1211-1214, 1999.
[9] F. R. Fulginei and A. Salvini, “Softcomputing for the identification of the Jiles–Atherton Model Parameters”. IEEE
Trans. Magn., v. 41. n. 3, pp. 1100-1108, 2005.
[10] N. Sadowski, N.J. Batistela, J.P.A. Bastos, and M. Lajoie-Mazenc, “An Inverse Jiles–Atherton Model to Take Into
Account Hysteresis in Time-Stepping Finite-Element”, Trans. on Magn., vol 38, n° 2, pp. 797-800, 2002.
[11] J.V. Leite, S. L. Avila, N.J. Batistela, W.P. Carpes Jr., N. Sadowski, P. Kuo-Peng, and J.P.A. Bastos, “Real coded
genetic algorithm for Jiles-Atherton model parameters identification”, IEEE Trans. on Magn., vol 40, n° 2, pp. 888–
891, 2004.
and Finite Elements”, IEEE Trans. on Magn., 42(4), pp. 907-910, 2006.
[2] S. E. Zirka, Y. I. Moroz and E. D. Torre, “Combination hysteresis model for accommodation magnetization”, IEEE
Trans. on Magn., 41(9), pp. 2426-2431, 2005.
[3] F. Preisach, “Über die magnetische Nachwirkung”, Zeitschrift für Physik, 94, pp. 277-302, 1935.
[4] A. Benabou, S. Clénet and F. Piriou, "Comparison of the Preisach and Jiles-Atherton models to take hysteresis
phenomenon into account in Finite Element Analysis", COMPEL, 23(3), pp. 825-834, 2004.
[5] D. C. Jiles and D .L. Atherton, “Theory of ferromagnetic hysteresis,” J. Magn. Magn. Mater., vol. 61, pp. 48–60,1986.
[6] D. C. Jiles, “A self consistent generalized model for the calculation of minor loops excursions in the theory of
hysteresis. IEEE Trans. Magn. v. 28, n. 5, p. 2602 - 2604, 1992.
[7] K. H. Carpenter, “A differential equation approach to minor loops in the Jiles–Atherton hysteresis model,” IEEE Trans.
on Magn., v. 27, n° 6, pp. 4404-4406 (1991).
[8] D. Lederer, H. Igarashi, A. Kost and T. Honma. “On the parameter identification and application of the Jiles-Atherton
hysteresis model for numerical modelling of measured characteristics”, IEEE Trans. Magn. vol.35, 1211-1214, 1999.
[9] F. R. Fulginei and A. Salvini, “Softcomputing for the identification of the Jiles–Atherton Model Parameters”. IEEE
Trans. Magn., v. 41. n. 3, pp. 1100-1108, 2005.
[10] N. Sadowski, N.J. Batistela, J.P.A. Bastos, and M. Lajoie-Mazenc, “An Inverse Jiles–Atherton Model to Take Into
Account Hysteresis in Time-Stepping Finite-Element”, Trans. on Magn., vol 38, n° 2, pp. 797-800, 2002.
[11] J.V. Leite, S. L. Avila, N.J. Batistela, W.P. Carpes Jr., N. Sadowski, P. Kuo-Peng, and J.P.A. Bastos, “Real coded
genetic algorithm for Jiles-Atherton model parameters identification”, IEEE Trans. on Magn., vol 40, n° 2, pp. 888–
891, 2004.
Downloads
Published
2009-08-01
How to Cite
Jean V. Leite, N. Sadowski, Patrick Kuo-Peng, & Abdelkader Benabou. (2009). MINOR LOOPS CALCULATION WITH A MODIFIED JILES-ATHERTON HYSTERESIS MODEL. Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 8(1), 49S–55S. Retrieved from http://www.jmoe.org/index.php/jmoe/article/view/259
Issue
Section
Regular Papers