Wavelet-Based Algebraic Multigrid Method Using the Lifting Technique

Fabio Henrique Pereira, Silvio Ikuyo Nabeta


This paper presents a progress in the development of a recent and promising wavelet-based Algebraic Multigrid method. This new approach uses the lifting technique for creating an algorithm with smaller memory requirement and a reduced number of floating point operations, if long filters are used, keeping the efficiency of the multigrid technique, which is tested in the TEAM 28 Problem. The Incomplete Cholesky and Incomplete LU preconditioners are used for comparison.

Full Text:



F. H. Pereira, S. L. L. Verardi, S. I. Nabeta, A Wavelet-based Algebraic Multigrid preconditioner for sparse linear systems, Appl. Math. Comput., 182:1098-1107 (2006).

F. H. Pereira, M. F. Palin, S. L. L. Verardi, S. I. Nabeta. A Parallel Wavelet-based Algebraic Multigrid black-box Solver and Preconditioner. In: 16th Compumag - Conference on the Computation of Electromagnetic Fields, 2007, Aachen.

A. Jensen, A. la Cour-Harbo, The Discrete Wavelet Transform, Ripples in Mathematics, Springer, Berlin 2001.

W. Sweldens. The lifting scheme: A custom-design construction of biorthogonal wavelets. Appl. Comput. Harmon. Analysis, 3(2):186-200 (1996).

U. Trottenberg, C. W. Oosterlee, and A. Schuller, Multigrid, Academic Press, New York, 2001.

T. K. Sarkar, S. P. Magdalena, C.W. Michael, Wavelet Applications in Engineering Electromagnetics, Artech House, Boston, 2002.

I. Daubechies and W. Sweldens, Factoring Wavelet Transforms into Lifting Steps, J. Fourier Anal. Appl., 4(3):247-269 (1998).

T. Davis. University of Florida Sparse Matrix Collection. NA Digest, 97(23), 1997.

B. Kirk, et. al., LibMesh: A C++ Library for Parallel Adaptive Mesh Refinement/Coarsening Simulations. Engineering with Computers, 22(3-4):237-254 (2006).

H. Karl, J. Fetzer, S. Kurz, G. Lehner, W. M. Rucker, Description of TEAM workshop problem 28: An electromagnetic levitation device, Proceedings of the TEAM Workshop in the Sixth Round, Rio de Janeiro, 48-51 (1997).

D. Meeker, Finite element method magnetic: User's manual. Massachusetts, USA, FEMM Version 4.2, 2003.

Q. Chen and A. Konrad, A review of finite element open boundary techniques for static and quasistatic electromagnetic field problems, IEEE Transactions on Magnetics, 33(1):663-676 (1997).

D. Osei-Kuffuor, Y. Saad, Preconditioning Helmholtz linear systems, Appl. Num. Math., to be published.

F. H. Pereira, et. al., A Wavelet-based Algebraic Multigrid Preconditioning for Iterative Solvers in Finite Element Analysis”. IEEE Trans. on Magn., 43(4): 1553-1556 (2007).

M. Benzi, Preconditioning Techniques for Large Linear Systems: A Survey, J. of Comput. Physics, 182:418–477 (2002).


  • There are currently no refbacks.

© Copyright 2007-2016 JMOe Brazilian Microwave and Optoelectronics Society (SBMO) and Brazilian Society of Electromagnetism (SBMag)