Design and Performance Study of Single and Multi-Layered Fractal Based Miniaturized Patch Antennas for 2.4 GHz Applications




DGS, fractal, microstrip, Minkowski, patch


The design and characterization of single and multi-
layered miniaturized microstrip antennas resonating at 2.4 GHz
are proposed. The miniaturization is accomplished by fractal
Defected Ground Structure (DGS). The DGS used for
miniaturization is a Modified Minkowski Fractal DGS (M-
MFDGS). The proposed size reduction process with M-MFDGS
follows the selection of the best antenna configuration and its
design parameters through sensitivity analysis and pattern search
optimization. Microstrip patch antennas with three different
feeding mechanisms are considered here to validate the effect of
DGS over the size reduction and performance improvement.
Incorporating M-MFDGS in three antennas, the first one with
microstrip line feed accomplishes a maximum patch area reduction
of 70% among the three proposed structures with a gain of 1.43 dBi.
Likewise, with a slightly higher dimension than the first structure,
the second antenna with proximity-coupled feed achieves a higher
gain (5.11 dBi) and bandwidth (110 MHz). Although the size
reduction in the third antenna with aperture-coupled feed is a little
less it has the highest gain (5.91 dBi) among all the three. All three
compact antennas are physically fabricated and the simulated
results are validated with the measured results.


A. Boukarkar, X. -Q. Lin, Y. Jiang, and Y. -Q. Yu, "Miniaturized Single-Feed Multiband Patch Antennas," IEEE Trans. Antennas Propag., vol. 65, no. 2, pp. 850-854, 2017. doi: 10.1109/TAP.2016.2632620.

A. Motevasselian, and W. G. Whittow, "Patch size reduction of rectangular microstrip antennas by means of a cuboid ridge," IET Microw. Antenna. Propag., vol. 9, no. 15, pp. 1727-1732, 2015. doi: 10.1049/iet-map.2014.0559.

V. V. Reddy, and N. V. S. N. Sarma, "Compact Circularly Polarized Asymmetrical Fractal Boundary Microstrip Antenna for Wireless Applications," IEEE Antennas Wirel. Propag. Lett., vol. 13, pp. 118-121, 2014. doi: 10.1109/LAWP.2013.2296951.

J. Oh, and K. Sarabandi, "A Topology-Based Miniaturization of Circularly Polarized Patch Antennas,” IEEE Trans. Antennas Propag., vol. 61, no. 3, pp. 1422-1426, 2013. doi: 10.1109/TAP.2012.2231915.

H. -X. Xu, G. -M. Wang, J. -G. Liang, M. Q. Qi, and X. Gao, "Compact Circularly Polarized Antennas Combining Meta-Surfaces and Strong Space-Filling Meta-Resonators," IEEE Trans. Antennas Propag., vol. 61, no. 7, pp. 3442-3450, 2013. doi: 10.1109/TAP.2013.2255855.

Y. Dong, H. Toyao, and T. Itoh, "Design and Characterization of Miniaturized Patch Antennas Loaded with Complementary Split-Ring Resonators," IEEE Trans. Antennas Propag., vol. 60, no. 2, pp. 772-785, 2012. doi: 10.1109/TAP.2011.2173120.

C. -S. Kim, J. -S. Park, D. Ahn, and J. -B. Lim, "A novel 1-D periodic defected ground structure for planar circuits," IEEE Microwave and Guided Wave Letters, vol. 10, no. 4, pp. 131-133, 2000. doi: 10.1109/75.846922.

M. Yang, Z. N. Chen, P. Y. Lau, X. Qing, and X. Yin, "Miniaturized Patch Antenna with Grounded Strips,” IEEE Trans. Antennas Propag., vol. 63, no. 2, pp. 843-848, 2015. doi: 10.1109/TAP.2014.2382668.

J. Pei, A. -G. Wang, S. Gao, and W. Leng, "Miniaturized Triple-Band Antenna with a Defected Ground Plane for WLAN/WiMAX Applications," IEEE Antennas Wirel. Propag. Lett., vol. 10, pp. 298-301, 2011. doi: 10.1109/LAWP.2011.2140090.

S. Xu, K. Ma, F. Meng, and K. S. Yeo, "Novel Defected Ground Structure and Two-Side Loading Scheme for Miniaturized Dual-Band SIW Bandpass Filter Designs," IEEE Microw. Wirel. Compon. Lett., vol. 25, no. 4, pp. 217-219, 2015. doi: 10.1109/LMWC.2015.2400916.

C. Kumar, and D. Guha, "Asymmetric Geometry of Defected Ground Structure for Rectangular Microstrip: A New Approach to Reduce its Cross-Polarized Fields," IEEE Trans. Antennas Propag., vol. 64, no. 6, pp. 2503-2506, 2016. doi: 10.1109/TAP.2016.2537360.

C. A. Balanis, Antenna Theory: Analysis and Design, 3rd Ed., John Wiley & Sons, 2005.

G. P. Mishra, and B. B. Mangaraj, ‘‘Miniaturized microstrip patch design based on highly capacitive defected ground structure with fractal boundary for X-band microwave communications,’’ IET Microw. Antenna. Propag., vol. 13, no. 10, pp. 1593-1601, 2019. doi: 10.1049/iet-map.2018.5778.

K. Wei, J. Y. Li, L. Wang, R. Xu, and Z. J. Xing, "A New Technique to Design Circularly Polarized Microstrip Antenna by Fractal Defected Ground Structure," IEEE Trans. Antennas Propag., vol. 65, no. 7, pp. 3721-3725, 2017. doi: 10.1109/TAP.2017.2700226.

R. Garg, P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Hand Book, Artech House, 2001.

C. C. Wong, and C. E. Free, "DGS pattern with enhanced effective capacitance," Electron. Lett., vol. 42, no. 8, pp. 470-471, 2006. doi: 10.1049/el:20060316.

ANSYS® Electronics-High Frequency Electromagnetics, Release 19.1 Capabilities Brochure, Sensitivity Analysis Guide, ANSYS, Inc, 2018.

B. B. Mangaraj, M. R. Jena, and S. K. Mohanty, “Bacteria Foraging Algorithm in Antenna Design,” Appl. Comput. Intell. Soft Comput., vol. 2016, no. 1, pp. 1-11, 2016. doi:10.1155/2016/5983469.

S. K. Mohanty, P. Swain, and B. B. Mangaraj, "Fuzzy logic biased optimal dipole-linear antenna array: An improved array with better trade-off between performance parameters," Prog. Electromagn. Res. B, vol. 79, pp. 167-190, 2017. doi:10.2528/PIERB17070402.

Indoor 2.4 GHz Microstrip Antenna, D-Link DWL-R60AT Data Sheet, D-Link®.

2.4 GHz Wi-Fi/Bluetooth Microstrip Button Antenna, WCM.01.0151W Data Sheet, Taoglas®.

Y. Liu, J. Xue, H. Wang, and S. Gong, “Low-profile omnidirectional dual-polarised antenna for 2.4 GHz WLAN applications,” Electron. Lett., vol. 50, no. 14, pp. 975-976, 2014. doi: 10.1049/el.2014.1146.

Y. J. Cho, Y. S. Shin, and S. O. Park, “Internal PIFA for 2.4/5 GHz WLAN applications,” Electron. Lett., vol. 42, no. 1, pp. 8-13, 2006. doi: 10.1049/el:20062998.

S. X. Ta, I. Park, and R. W. Ziolkowski, “Circularly Polarized Crossed Dipole on an HIS for 2.4/5.2/5.8-GHz WLAN Applications,” IEEE Antennas Wirel. Propag. Lett., vol. 12, pp. 1464-1467, 2013. doi:10.1109/LAWP.2013.2288787.

M. -A. Chung, and C. -F. Yang, “Built-in antenna design for 2.4 GHz ISM band and GPS operations in a wrist-worn wireless communication device,” IET Microw. Antenna. Propag., vol. 10, no. 12, pp. 1285-1291, 2016. doi: 10.1049/iet-map.2015.0785.

R. Zhang, H. -H. Kim, and H. Kim, “Triple-band ground radiation antenna for GPS, WiFi 2.4 and 5 GHz band applications,” Electron. Lett., vol. 51, no. 25, pp. 2082-2084, 2015. doi: 10.1049/el.2015.3440.

M. K. Khandelwal, B. K. Kanaujia, S. Dwari, S. Kumar, and A. K. Gautam, “Analysis and Design of Dual Band Compact Stacked Microstrip Patch Antenna with Defected Ground Structure for WLAN/WiMAX Applications,” Int. J. Electron. Commun. (AEU), vol. 69, no. 1, pp. 39-47, 2015. doi:

C. -M. Wu, C. -N. Chiu, and C. -K Hsu, “A New Non-Uniform Meandered and Fork-Type Grounded Antenna for Triple-Band WLAN Applications,” IEEE Antennas Wirel. Propag. Lett., vol. 5, pp. 346–348, 2006. doi: 10.1109/LAWP.2006.880692.

L. Peng, C. -L. Ruan, and X. -H. Wu, “Design and operation of dual/triple-band asymmetric M-shaped microstrip patch antennas,” IEEE Antennas Wirel. Propag. Lett., vol. 9, pp. 1069–1072, 2010. doi: 10.1109/LAWP.2010.2091671.

H. -X. Xu, G. -M. Wang, and M. -Q. Qi, “A Miniaturized Triple-Band Metamaterial Antenna with Radiation Pattern Selectivity And Polarization Diversity,” Prog. Electromagn. Res., vol. 137, pp. 275-292, 2013. doi: 10.2528/PIER12081008.

H. -X. Xu, G. -M. Wang, Y. -Y. Lv, M. -Q. Qi, X. Gao, and S. Ge, “Multifrequency Monopole Antennas by Loading Metamaterial Transmission Lines with Dual-Shunt Branch Circuit”, Prog. Electromagn. Res., vol. 137, pp. 703-725, 2013. doi: 10.2528/PIER12122409.

C. -T. Chuang, and S. -J. Chung, “Synthesis and Design of a New Printed Filtering Antenna,” IEEE Trans. Antennas Propag., vol. 59, no. 3, pp. 1036-1042, 2011. doi: 10.1109/TAP.2010.2103001.

W. Cheng, “Compact 2.4-GHz filtering monopole antenna based on modified SRR-inspired high-frequency-selective filter,” Optik, vol. 127, pp. 10653-10658, 2016. doi:

Z. H. Jiang, M. D. Gregory, and D. H. Werner, “Design and Experimental Investigation of a Compact Circularly Polarized Integrated Filtering Antenna for Wearable Biotelemetric Devices,” IEEE Trans. Biomed. Circuits. Syst., vol. 10, no. 2, pp. 328-338, 2016. doi: 10.1109/TBCAS.2015.2438551.

A. Pirooj, M. N. -Moghadasi, and F. B. Zarrabi, “Design of Compact Slot Antenna Based on Split Ring Resonator for 2.45/5 GHz WLAN Applications With Circular Polarization,” Microw. Opt. Technol. Lett., vol. 58, no. 1, pp. 12-16, 2016. doi:

C. -T. Chuang, and S. -J. Chung, “A Compact Printed Filtering Antenna Using a Ground-Intruded Coupled Line Resonator,” IEEE Trans. Antennas Propag., vol. 59, no. 10, pp. 3630-3637, 2011. doi: 10.1109/TAP.2011.2163777.




How to Cite

Sahoo, M. A. B., Mishra, D. G. P. ., & Mangaraj, B. (2021). Design and Performance Study of Single and Multi-Layered Fractal Based Miniaturized Patch Antennas for 2.4 GHz Applications. Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 20(2), AoP 274–296.



Regular Papers